1887

Abstract

Chikungunya virus (CHIKV) has recently affected millions of people in the Indian Ocean, with rare cases of encephalopathy and encephalitis occurring in neonates. In the study described herein, the capacity of mouse brain cells to control infection through innate immune antiviral responses was assessed. , CHIKV principally infected a subpopulation of mouse GFAP+ primary astrocytes. Oligodendrocytes and neurons could also be infected. An innate immune response was engaged by CHIKV-infected astrocytes with elevated expression of mRNAs for IFN-α−β, inflammatory cytokines (e.g. IL-1β, IL-12, IL-10, IL-24) and proapoptotic factors (e.g. TNF-α, FasL, Lymphotoxin B). Programmed cell death through the intrinsic caspase-9 pathway was observed by immunofluorescence in infected astrocytes and neurons but not in oligodendrocytes. Interestingly, microglia did not replicate CHIKV but responded by elevated mitogen-activated protein kinase (MAPK) activity. Intracerebroventricular injection of CHIKV in neonate mice led to the infection of astrocytes. The astrogliosis response was accompanied by a dendritic CD206+ cell mobilization restricted to the site of infection. The results of this study support the paradigm that a multifaceted innate immune response can be mobilized by both professional immune and glial cells to control CHIKV neuroinfection events in neonates.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.071175-0
2015-02-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/294.html?itemId=/content/journal/jgv/10.1099/vir.0.071175-0&mimeType=html&fmt=ahah

References

  1. Binder G. K., Griffin D. E.. ( 2001;). Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. . Science 293:, 303–306. [CrossRef][PubMed]
    [Google Scholar]
  2. Carey D. E., Myers R. M., DeRanitz C. M., Jadhav M., Reuben R.. ( 1969;). The 1964 Chikungunya epidemic at Vellore, South India, including observations on concurrent dengue. . Trans R Soc Trop Med Hyg 63:, 434–445. [CrossRef][PubMed]
    [Google Scholar]
  3. Chandak N. H., Kashyap R. S., Kabra D., Karandikar P., Saha S. S., Morey S. H., Purohit H. J., Taori G. M., Daginawala H. F.. ( 2009;). Neurological complications of Chikungunya virus infection. . Neurol India 57:, 177–180. [CrossRef][PubMed]
    [Google Scholar]
  4. Chastel C.. ( 1963;). [Human infections in Cambodia by the Chikungunya virus or an apparently closely related agent. II. Experimental pathological anatomy.]. . Bull Soc Pathol Exot 56:, 915–924.[PubMed]
    [Google Scholar]
  5. Chatterjee S. N., Sarkar J. K.. ( 1965;). Electron microscopic studies of suckling mouse brain cells infected with Chikungunya virus. . Indian J Exp Biol 3:, 227–234.[PubMed]
    [Google Scholar]
  6. Chatterjee S. N., Chakravarti S. K., Mitra A. C., Sarkar J. K.. ( 1965;). Virological investigation of cases with neurological complications during the outbreak of haemorrhagic fever in Calcutta. . J Indian Med Assoc 45:, 314–316.[PubMed]
    [Google Scholar]
  7. Couderc T., Chrétien F., Schilte C., Disson O., Brigitte M., Guivel-Benhassine F., Touret Y., Barau G., Cayet N. et al. ( 2008;). A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. . PLoS Pathog 4:, e29. [CrossRef][PubMed]
    [Google Scholar]
  8. Deresiewicz R. L., Thaler S. J., Hsu L., Zamani A. A.. ( 1997;). Clinical and neuroradiographic manifestations of eastern equine encephalitis. . N Engl J Med 336:, 1867–1874. [CrossRef][PubMed]
    [Google Scholar]
  9. Dhanwani R., Khan M., Alam S. I., Rao P. V., Parida M.. ( 2011;). Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. . Proteomics 11:, 1936–1951. [CrossRef][PubMed]
    [Google Scholar]
  10. Economopoulou A., Dominguez M., Helynck B., Sissoko D., Wichmann O., Quenel P., Germonneau P., Quatresous I.. ( 2009;). Atypical Chikungunya virus infections: clinical manifestations, mortality and risk factors for severe disease during the 2005–2006 outbreak on Réunion. . Epidemiol Infect 137:, 534–541. [CrossRef][PubMed]
    [Google Scholar]
  11. Esen N., Blakely P. K., Rainey-Barger E. K., Irani D. N.. ( 2012;). Complexity of the microglial activation pathways that drive innate host responses during lethal alphavirus encephalitis in mice. . ASN Neuro 4:, 207–221. [CrossRef][PubMed]
    [Google Scholar]
  12. Farina C., Aloisi F., Meinl E.. ( 2007;). Astrocytes are active players in cerebral innate immunity. . Trends Immunol 28:, 138–145. [CrossRef][PubMed]
    [Google Scholar]
  13. Fazakerley J. K., Amor S., Webb H. E.. ( 1983;). Reconstitution of Semliki forest virus infected mice, induces immune mediated pathological changes in the CNS. . Clin Exp Immunol 52:, 115–120.[PubMed]
    [Google Scholar]
  14. Fazakerley J. K., Cotterill C. L., Lee G., Graham A.. ( 2006;). Virus tropism, distribution, persistence and pathology in the corpus callosum of the Semliki Forest virus-infected mouse brain: a novel system to study virus-oligodendrocyte interactions. . Neuropathol Appl Neurobiol 32:, 397–409. [CrossRef][PubMed]
    [Google Scholar]
  15. Fraisier C., Koraka P., Belghazi M., Bakli M., Granjeaud S., Pophillat M., Lim S. M., Osterhaus A., Martina B. et al. ( 2014;). Kinetic analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. . PLoS ONE 9:, e91397. [CrossRef][PubMed]
    [Google Scholar]
  16. Galiana E., Borde I., Marin P., Rassoulzadegan M., Cuzin F., Gros F., Rouget P., Evrard C.. ( 1990;). Establishment of permanent astroglial cell lines, able to differentiate in vitro, from transgenic mice carrying the polyoma virus large T gene: an alternative approach to brain cell immortalization. . J Neurosci Res 26:, 269–277. [CrossRef][PubMed]
    [Google Scholar]
  17. Ganesan K., Diwan A., Shankar S. K., Desai S. B., Sainani G. S., Katrak S. M.. ( 2008;). Chikungunya encephalomyeloradiculitis: report of 2 cases with neuroimaging and 1 case with autopsy findings. . AJNR Am J Neuroradiol 29:, 1636–1637. [CrossRef][PubMed]
    [Google Scholar]
  18. Gérardin P., Barau G., Michault A., Bintner M., Randrianaivo H., Choker G., Lenglet Y., Touret Y., Bouveret A. et al. ( 2008;). Multidisciplinary prospective study of mother-to-child Chikungunya virus infections on the island of La Réunion. . PLoS Med 5:, e60. [CrossRef][PubMed]
    [Google Scholar]
  19. Glasgow G. M., McGee M. M., Sheahan B. J., Atkins G. J.. ( 1997;). Death mechanisms in cultured cells infected by Semliki Forest virus. . J Gen Virol 78:, 1559–1563.[PubMed]
    [Google Scholar]
  20. Griffin D. E.. ( 2003;). Immune responses to RNA-virus infections of the CNS. . Nat Rev Immunol 3:, 493–502. [CrossRef][PubMed]
    [Google Scholar]
  21. Griffiths M. R., Neal J. W., Fontaine M., Das T., Gasque P.. ( 2009;). Complement factor H, a marker of self protects against experimental autoimmune encephalomyelitis. . J Immunol 182:, 4368–4377. [CrossRef][PubMed]
    [Google Scholar]
  22. Hammon W. M., Rudnick A., Sather G. E.. ( 1960;). Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. . Science 131:, 1102–1103. [CrossRef][PubMed]
    [Google Scholar]
  23. Hauwel M., Furon E., Canova C., Griffiths M., Neal J., Gasque P.. ( 2005a;). Innate (inherent) control of brain infection, brain inflammation and brain repair: the role of microglia, astrocytes, “protective” glial stem cells and stromal ependymal cells. . Brain Res Brain Res Rev 48:, 220–233. [CrossRef][PubMed]
    [Google Scholar]
  24. Hauwel M., Furon E., Gasque P.. ( 2005b;). Molecular and cellular insights into the coxsackie-adenovirus receptor: role in cellular interactions in the stem cell niche. . Brain Res Brain Res Rev 48:, 265–272. [CrossRef][PubMed]
    [Google Scholar]
  25. Hoarau J. J., Jaffar Bandjee M. C., Krejbich Trotot P., Das T., Li-Pat-Yuen G., Dassa B., Denizot M., Guichard E., Ribera A. et al. ( 2010;). Persistent chronic inflammation and infection by Chikungunya arthritogenic alphavirus in spite of a robust host immune response. . J Immunol 184:, 5914–5927. [CrossRef][PubMed]
    [Google Scholar]
  26. Irani D. N., Prow N. A.. ( 2007;). Neuroprotective interventions targeting detrimental host immune responses protect mice from fatal alphavirus encephalitis. . J Neuropathol Exp Neurol 66:, 533–544. [CrossRef][PubMed]
    [Google Scholar]
  27. Jackson A. C., Moench T. R., Griffin D. E., Johnson R. T.. ( 1987;). The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. . Lab Invest 56:, 418–423.[PubMed]
    [Google Scholar]
  28. Jadhav M., Namboodripad M., Carman R. H., Carey D. E., Myers R. M.. ( 1965;). Chikungunya disease in infants and children in Vellore: a report of clinical and haematological features of virologically proved cases. . Indian J Med Res 53:, 764–776.[PubMed]
    [Google Scholar]
  29. Kerr D. A., Larsen T., Cook S. H., Fannjiang Y. R., Choi E., Griffin D. E., Hardwick J. M., Irani D. N.. ( 2002;). BCL-2 and BAX protect adult mice from lethal Sindbis virus infection but do not protect spinal cord motor neurons or prevent paralysis. . J Virol 76:, 10393–10400. [CrossRef][PubMed]
    [Google Scholar]
  30. Krejbich-Trotot P., Denizot M., Hoarau J. J., Jaffar-Bandjee M. C., Das T., Gasque P.. ( 2011;). Chikungunya virus mobilizes the apoptotic machinery to invade host cell defenses. . FASEB J 25:, 314–325. [CrossRef][PubMed]
    [Google Scholar]
  31. Lebrun G., Chadda K., Reboux A. H., Martinet O., Gaüzère B. A.. ( 2009;). Guillain-Barré syndrome after Chikungunya infection. . Emerg Infect Dis 15:, 495–496. [CrossRef][PubMed]
    [Google Scholar]
  32. Lemant J., Boisson V., Winer A., Thibault L., André H., Tixier F., Lemercier M., Antok E., Cresta M. P. et al. ( 2008;). Serious acute Chikungunya virus infection requiring intensive care during the Reunion Island outbreak in 2005–2006. . Crit Care Med 36:, 2536–2541. [CrossRef][PubMed]
    [Google Scholar]
  33. McKimmie C. S., Fazakerley J. K.. ( 2005;). In response to pathogens, glial cells dynamically and differentially regulate Toll-like receptor gene expression. . J Neuroimmunol 169:, 116–125. [CrossRef][PubMed]
    [Google Scholar]
  34. McKimmie C. S., Roy D., Forster T., Fazakerley J. K.. ( 2006;). Innate immune response gene expression profiles of N9 microglia are pathogen-type specific. . J Neuroimmunol 175:, 128–141. [CrossRef][PubMed]
    [Google Scholar]
  35. Mims C. A., Murphy F. A., Taylor W. P., Marshall I. D.. ( 1973;). Pathogenesis of Ross River virus infection in mice. I. Ependymal infection, cortical thinning, and hydrocephalus. . J Infect Dis 127:, 121–128. [CrossRef][PubMed]
    [Google Scholar]
  36. Nimmannitya S., Halstead S. B., Cohen S. N., Margiotta M. R.. ( 1969;). Dengue and Chikungunya virus infection in man in Thailand, 1962–1964. I. Observations on hospitalized patients with hemorrhagic fever. . Am J Trop Med Hyg 18:, 954–971.[PubMed]
    [Google Scholar]
  37. Ozden S., Huerre M., Riviere J. P., Coffey L. L., Afonso P. V., Mouly V., de Monredon J., Roger J. C., El Amrani M. et al. ( 2007;). Human muscle satellite cells as targets of Chikungunya virus infection. . PLoS ONE 2:, e527. [CrossRef][PubMed]
    [Google Scholar]
  38. Palha N., Guivel-Benhassine F., Briolat V., Lutfalla G., Sourisseau M., Ellett F., Wang C. H., Lieschke G. J., Herbomel P. et al. ( 2013;). Real-time whole-body visualization of Chikungunya virus infection and host interferon response in zebrafish. . PLoS Pathog 9:, e1003619. [CrossRef][PubMed]
    [Google Scholar]
  39. Pialoux G., Gaüzère B. A., Jauréguiberry S., Strobel M.. ( 2007;). Chikungunya, an epidemic arbovirosis. . Lancet Infect Dis 7:, 319–327. [CrossRef][PubMed]
    [Google Scholar]
  40. Powers A. M., Logue C. H.. ( 2007;). Changing patterns of Chikungunya virus: re-emergence of a zoonotic arbovirus. . J Gen Virol 88:, 2363–2377. [CrossRef][PubMed]
    [Google Scholar]
  41. Precious S. W., Webb H. E., Bowen E. T.. ( 1974;). Isolation and persistence of Chikungunya virus in cultures of mouse brain cells. . J Gen Virol 23:, 271–279. [CrossRef][PubMed]
    [Google Scholar]
  42. Priya R., Patro I. K., Parida M. M.. ( 2014;). TLR3 mediated innate immune response in mice brain following infection with Chikungunya virus. . Virus Res 189:, 194–205. [CrossRef][PubMed]
    [Google Scholar]
  43. Ramful D., Carbonnier M., Pasquet M., Bouhmani B., Ghazouani J., Noormahomed T., Beullier G., Attali T., Samperiz S. et al. ( 2007;). Mother-to-child transmission of Chikungunya virus infection. . Pediatr Infect Dis J 26:, 811–815. [CrossRef][PubMed]
    [Google Scholar]
  44. Robin S., Ramful D., Le Seach’ F., Jaffar-Bandjee M. C., Rigou G., Alessandri J. L.. ( 2008;). Neurologic manifestations of pediatric Chikungunya infection. . J Child Neurol 23:, 1028–1035. [CrossRef][PubMed]
    [Google Scholar]
  45. Rogers C. A., Gasque P., Piddlesden S. J., Okada N., Holers V. M., Morgan B. P.. ( 1996;). Expression and function of membrane regulators of complement on rat astrocytes in culture. . Immunology 88:, 153–161. [CrossRef][PubMed]
    [Google Scholar]
  46. Ryman K. D., Klimstra W. B.. ( 2008;). Host responses to alphavirus infection. . Immunol Rev 225:, 27–45. [CrossRef][PubMed]
    [Google Scholar]
  47. Sourisseau M., Schilte C., Casartelli N., Trouillet C., Guivel-Benhassine F., Rudnicka D., Sol-Foulon N., Le Roux K., Prevost M. C. et al. ( 2007;). Characterization of reemerging Chikungunya virus. . PLoS Pathog 3:, e89. [CrossRef][PubMed]
    [Google Scholar]
  48. Thiruvengadam K. V., Kalyanasundaram V., Rajgopal J.. ( 1965;). Clinical and pathological studies on Chikungunya fever in Madras city. . Indian J Med Res 53:, 729–744.[PubMed]
    [Google Scholar]
  49. Tournebize P., Charlin C., Lagrange M.. ( 2009;). [Neurological manifestations in Chikungunya: about 23 cases collected in Reunion Island]. . Rev Neurol (Paris) 165:, 48–51. [CrossRef][PubMed]
    [Google Scholar]
  50. Wang E., Volkova E., Adams A. P., Forrester N., Xiao S. Y., Frolov I., Weaver S. C.. ( 2008;). Chimeric alphavirus vaccine candidates for Chikungunya. . Vaccine 26:, 5030–5039. [CrossRef][PubMed]
    [Google Scholar]
  51. Weaver S. C., Barrett A. D.. ( 2004;). Transmission cycles, host range, evolution and emergence of arboviral disease. . Nat Rev Microbiol 2:, 789–801. [CrossRef][PubMed]
    [Google Scholar]
  52. Wielanek A. C., Monredon J. D., Amrani M. E., Roger J. C., Serveaux J. P.. ( 2007;). Guillain-Barré syndrome complicating a Chikungunya virus infection. . Neurology 69:, 2105–2107. [CrossRef][PubMed]
    [Google Scholar]
  53. Wikan N., Sakoonwatanyoo P., Ubol S., Yoksan S., Smith D. R.. ( 2012;). Chikungunya virus infection of cell lines: analysis of the East, Central and South African lineage. . PLoS ONE 7:, e31102. [CrossRef][PubMed]
    [Google Scholar]
  54. Ziegler S. A., Lu L., da Rosa A. P., Xiao S. Y., Tesh R. B.. ( 2008;). An animal model for studying the pathogenesis of Chikungunya virus infection. . Am J Trop Med Hyg 79:, 133–139.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.071175-0
Loading
/content/journal/jgv/10.1099/vir.0.071175-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error