1887

Abstract

Despite the success of combined antiretroviral therapy in controlling viral replication in human immunodeficiency virus (HIV)-infected individuals, HIV-associated neurocognitive disorders, commonly referred to as neuroAIDS, remain a frequent and poorly understood complication. Infection of CD8 lymphocyte-depleted rhesus macaques with the SIVmac251 viral swarm is a well-established rapid disease model of neuroAIDS that has provided critical insight into HIV-1-associated neurocognitive disorder onset and progression. However, no studies so far have characterized in depth the relationship between intra-host viral evolution and pathogenesis in this model. Simian immunodeficiency virus (SIV) sequences were obtained from six infected animals. Sequences were sampled longitudinally from several lymphoid and non-lymphoid tissues, including individual lobes within the brain at necropsy, for four macaques; two animals were sacrificed at 21 days post-infection (p.i.) to evaluate early viral seeding of the brain. Bayesian phylodynamic and phylogeographic analyses of the sequence data were used to ascertain viral population dynamics and gene flow between peripheral and brain tissues, respectively. A steady increase in viral effective population size, with a peak occurring at ~50–80 days p.i., was observed across all longitudinally monitored macaques. Phylogeographic analysis indicated continual viral seeding of the brain from several peripheral tissues throughout infection, with the last migration event before terminal illness occurring in all macaques from cells within the bone marrow. The results strongly supported the role of infected bone marrow cells in HIV/SIV neuropathogenesis. In addition, our work demonstrated the applicability of Bayesian phylogeography to intra-host studies in order to assess the interplay between viral evolution and pathogenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.070318-0
2014-12-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2784.html?itemId=/content/journal/jgv/10.1099/vir.0.070318-0&mimeType=html&fmt=ahah

References

  1. Alfahad T. B., Nath A.. ( 2013;). Update on HIV-associated neurocognitive disorders. . Curr Neurol Neurosci Rep 13:, 387. [CrossRef][PubMed]
    [Google Scholar]
  2. Alter G., Suscovich T. J., Teigen N., Meier A., Streeck H., Brander C., Altfeld M.. ( 2007;). Single-stranded RNA derived from HIV-1 serves as a potent activator of NK cells. . J Immunol 178:, 7658–7666. [CrossRef][PubMed]
    [Google Scholar]
  3. Annamalai L., Bhaskar V., Pauley D. R., Knight H., Williams K., Lentz M., Ratai E., Westmoreland S. V., González R. G., O’Neil S. P.. ( 2010a;). Impact of short-term combined antiretroviral therapy on brain virus burden in simian immunodeficiency virus-infected and CD8+ lymphocyte-depleted rhesus macaques. . Am J Pathol 177:, 777–791. [CrossRef][PubMed]
    [Google Scholar]
  4. Annamalai L., Westmoreland S. V., Domingues H. G., Walsh D. G., Gonzalez R. G., O’Neil S. P.. ( 2010b;). Myocarditis in CD8-depleted SIV-infected rhesus macaques after short-term dual therapy with nucleoside and nucleotide reverse transcriptase inhibitors. . PLoS ONE 5:, e14429. [CrossRef][PubMed]
    [Google Scholar]
  5. Autissier P., Soulas C., Burdo T. H., Williams K. C.. ( 2010;). Immunophenotyping of lymphocyte, monocyte and dendritic cell subsets in normal rhesus macaques by 12-color flow cytometry: clarification on DC heterogeneity. . J Immunol Methods 360:, 119–128. [CrossRef][PubMed]
    [Google Scholar]
  6. Baele G., Lemey P., Bedford T., Rambaut A., Suchard M. A., Alekseyenko A. V.. ( 2012;). Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. . Mol Biol Evol 29:, 2157–2167. [CrossRef][PubMed]
    [Google Scholar]
  7. Bello G., Zanotto P. M., Iamarino A., Gräf T., Pinto A. R., Couto-Fernandez J. C., Morgado M. G.. ( 2012;). Phylogeographic analysis of HIV-1 subtype C dissemination in Southern Brazil. . PLoS ONE 7:, e35649. [CrossRef][PubMed]
    [Google Scholar]
  8. Bissel S. J., Wang G., Trichel A. M., Murphey-Corb M., Wiley C. A.. ( 2006;). Longitudinal analysis of activation markers on monocyte subsets during the development of simian immunodeficiency virus encephalitis. . J Neuroimmunol 177:, 85–98. [CrossRef][PubMed]
    [Google Scholar]
  9. Burdo T. H., Soulas C., Orzechowski K., Button J., Krishnan A., Sugimoto C., Alvarez X., Kuroda M. J., Williams K. C.. ( 2010;). Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. . PLoS Pathog 6:, e1000842. [CrossRef][PubMed]
    [Google Scholar]
  10. Burdo T. H., Orzechowski K., Knight H. L., Miller A. D., Williams K.. ( 2012;). Dorsal root ganglia damage in SIV-infected rhesus macaques: an animal model of HIV-induced sensory neuropathy. . Am J Pathol 180:, 1362–1369. [CrossRef][PubMed]
    [Google Scholar]
  11. Burudi E. M., Fox H. S.. ( 2001;). Simian immunodeficiency virus model of HIV-induced central nervous system dysfunction. . Adv Virus Res 56:, 435–468. [CrossRef][PubMed]
    [Google Scholar]
  12. Chen M. F., Westmoreland S., Ryzhova E. V., Martín-García J., Soldan S. S., Lackner A., González-Scarano F.. ( 2006;). Simian immunodeficiency virus envelope compartmentalizes in brain regions independent of neuropathology. . J Neurovirol 12:, 73–89. [CrossRef][PubMed]
    [Google Scholar]
  13. Ciccozzi M., Equestre M., Costantino A., Marascio N., Quirino A., Lo Presti A., Cella E., Bruni R., Liberto M. C.. & other authors ( 2012;). Hepatitis C virus genotype 4d in Southern Italy: reconstruction of its origin and spread by a phylodynamic analysis. . J Med Virol 84:, 1613–1619. [CrossRef][PubMed]
    [Google Scholar]
  14. Critchlow D. L., Li S., Nourijelyani K., Pearl D. K.. ( 2000;). Some statistical methods for phylogenetic trees with application to HIV disease. . Math Comput Model 32:, 69–81. [CrossRef]
    [Google Scholar]
  15. de Carvalho L. M., Santos L. B., Faria N. R., de Castro Silveira W.. ( 2013;). Phylogeography of foot-and-mouth disease virus serotype O in Ecuador. . Infect Genet Evol 13:, 76–88. [CrossRef][PubMed]
    [Google Scholar]
  16. Drummond A. J., Rambaut A.. ( 2007;). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef][PubMed]
    [Google Scholar]
  17. Drummond A. J., Pybus O. G., Rambaut A., Forsberg R., Rodrigo A. G.. ( 2003;). Measurably evolving populations. . Trends Ecol Evol 18:, 481–488. [CrossRef]
    [Google Scholar]
  18. Drummond A. J., Rambaut A., Shapiro B., Pybus O. G.. ( 2005;). Bayesian coalescent inference of past population dynamics from molecular sequences. . Mol Biol Evol 22:, 1185–1192. [CrossRef][PubMed]
    [Google Scholar]
  19. Faria N. R., Suchard M. A., Rambaut A., Lemey P.. ( 2011;). Toward a quantitative understanding of viral phylogeography. . Curr Opin Virol 1:, 423–429. [CrossRef][PubMed]
    [Google Scholar]
  20. Fischer-Smith T., Bell C., Croul S., Lewis M., Rappaport J.. ( 2008;). Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies. . J Neurovirol 14:, 318–326. [CrossRef][PubMed]
    [Google Scholar]
  21. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  22. Harezlak J., Buchthal S., Taylor M., Schifitto G., Zhong J., Daar E., Alger J., Singer E., Campbell T.. & other authors ( 2011;). Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. . AIDS 25:, 625–633. [CrossRef][PubMed]
    [Google Scholar]
  23. Holmes E. C.. ( 2008;). Evolutionary history and phylogeography of human viruses. . Annu Rev Microbiol 62:, 307–328. [CrossRef][PubMed]
    [Google Scholar]
  24. Huson D. H.. ( 1998;). SplitsTree: analyzing and visualizing evolutionary data. . Bioinformatics 14:, 68–73. [CrossRef][PubMed]
    [Google Scholar]
  25. Jordan M. R., Kearney M., Palmer S., Shao W., Maldarelli F., Coakley E. P., Chappey C., Wanke C., Coffin J. M.. ( 2010;). Comparison of standard PCR/cloning to single genome sequencing for analysis of HIV-1 populations. . J Virol Methods 168:, 114–120. [CrossRef][PubMed]
    [Google Scholar]
  26. Kass R. E., Raftery A. E.. ( 1995;). Bayes factors. . J Am Stat Assoc 90:, 773–795. [CrossRef]
    [Google Scholar]
  27. Kim W. K., Corey S., Alvarez X., Williams K.. ( 2003;). Monocyte/macrophage traffic in HIV and SIV encephalitis. . J Leukoc Biol 74:, 650–656. [CrossRef][PubMed]
    [Google Scholar]
  28. Kim W. K., Sun Y., Do H., Autissier P., Halpern E. F., Piatak M. Jr, Lifson J. D., Burdo T. H., McGrath M. S., Williams K.. ( 2010;). Monocyte heterogeneity underlying phenotypic changes in monocytes according to SIV disease stage. . J Leukoc Biol 87:, 557–567. [CrossRef][PubMed]
    [Google Scholar]
  29. Kodama T., Mori K., Kawahara T., Ringler D. J., Desrosiers R. C.. ( 1993;). Analysis of simian immunodeficiency virus sequence variation in tissues of rhesus macaques with simian AIDS. . J Virol 67:, 6522–6534.[PubMed]
    [Google Scholar]
  30. Koppensteiner H., Brack-Werner R., Schindler M.. ( 2012;). Macrophages and their relevance in human immunodeficiency virus type I infection. . Retrovirology 9:, 82. [CrossRef][PubMed]
    [Google Scholar]
  31. Lackner A. A.. ( 1994;). Pathology of simian immunodeficiency virus induced disease. . Curr Top Microbiol Immunol 188:, 35–64.[PubMed]
    [Google Scholar]
  32. Lamers S. L., Sleasman J. W., Goodenow M. M.. ( 1996;). A model for alignment of Env V1 and V2 hypervariable domains from human and simian immunodeficiency viruses. . AIDS Res Hum Retroviruses 12:, 1169–1178. [CrossRef][PubMed]
    [Google Scholar]
  33. Lamers S. L., Gray R. R., Salemi M., Huysentruyt L. C., McGrath M. S.. ( 2011a;). HIV-1 phylogenetic analysis shows HIV-1 transits through the meninges to brain and peripheral tissues. . Infect Genet Evol 11:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  34. Lamers S. L., Poon A. F., McGrath M. S.. ( 2011b;). HIV-1 nef protein structures associated with brain infection and dementia pathogenesis. . PLoS ONE 6:, e16659. [CrossRef][PubMed]
    [Google Scholar]
  35. Lamers S. L., Fogel G. B., Singer E. J., Salemi M., Nolan D. J., Huysentruyt L. C., McGrath M. S.. ( 2012;). HIV-1 Nef in macrophage-mediated disease pathogenesis. . Int Rev Immunol 31:, 432–450. [CrossRef][PubMed]
    [Google Scholar]
  36. Langford S. E., Ananworanich J., Cooper D. A.. ( 2007;). Predictors of disease progression in HIV infection: a review. . AIDS Res Ther 4:, 11. [CrossRef][PubMed]
    [Google Scholar]
  37. Leitner T., Albert J.. ( 1999;). The molecular clock of HIV-1 unveiled through analysis of a known transmission history. . Proc Natl Acad Sci U S A 96:, 10752–10757. [CrossRef][PubMed]
    [Google Scholar]
  38. Lemey P., Rambaut A., Drummond A. J., Suchard M. A.. ( 2009;). Bayesian phylogeography finds its roots. . PLOS Comput Biol 5:, e1000520. [CrossRef][PubMed]
    [Google Scholar]
  39. Lemey P., Rambaut A., Welch J. J., Suchard M. A.. ( 2010;). Phylogeography takes a relaxed random walk in continuous space and time. . Mol Biol Evol 27:, 1877–1885. [CrossRef][PubMed]
    [Google Scholar]
  40. Liu S. L., Rodrigo A. G., Shankarappa R., Learn G. H., Hsu L., Davidov O., Zhao L. P., Mullins J. I.. ( 1996;). HIV quasispecies and resampling. . Science 273:, 415–416. [CrossRef][PubMed]
    [Google Scholar]
  41. Mankowski J. L., Clements J. E., Zink M. C.. ( 2002;). Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. . J Infect Dis 186: (Suppl 2), S199–S208. [CrossRef][PubMed]
    [Google Scholar]
  42. McCombe J. A., Vivithanaporn P., Gill M. J., Power C.. ( 2013;). Predictors of symptomatic HIV-associated neurocognitive disorders in universal health care. . HIV Med 14:, 99–107. [CrossRef][PubMed]
    [Google Scholar]
  43. Palmer S., Kearney M., Maldarelli F., Halvas E. K., Bixby C. J., Bazmi H., Rock D., Falloon J., Davey R. T. Jr. & other authors ( 2005;). Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. . J Clin Microbiol 43:, 406–413. [CrossRef][PubMed]
    [Google Scholar]
  44. Pennings P. S.. ( 2012;). Standing genetic variation and the evolution of drug resistance in HIV. . PLOS Comput Biol 8:, e1002527. [CrossRef][PubMed]
    [Google Scholar]
  45. Pond S. L., Frost S. D., Muse S. V.. ( 2005;). HyPhy: hypothesis testing using phylogenies. . Bioinformatics 21:, 676–679. [CrossRef][PubMed]
    [Google Scholar]
  46. Pulliam L., Gascon R., Stubblebine M., McGuire D., McGrath M. S.. ( 1997;). Unique monocyte subset in patients with AIDS dementia. . Lancet 349:, 692–695. [CrossRef][PubMed]
    [Google Scholar]
  47. r Core Team ( 2012;). r: A Language and Environment for Statistical Computing. Vienna:: r Foundation for Statistical Computing;.
    [Google Scholar]
  48. Ratai E. M., Pilkenton S., He J., Fell R., Bombardier J. P., Joo C. G., Lentz M. R., Kim W. K., Burdo T. H.. & other authors ( 2011;). CD8+ lymphocyte depletion without SIV infection does not produce metabolic changes or pathological abnormalities in the rhesus macaque brain. . J Med Primatol 40:, 300–309. [CrossRef][PubMed]
    [Google Scholar]
  49. Ryzhova E., Whitbeck J. C., Canziani G., Westmoreland S. V., Cohen G. H., Eisenberg R. J., Lackner A., González-Scarano F.. ( 2002a;). Rapid progression to simian AIDS can be accompanied by selection of CD4-independent gp120 variants with impaired ability to bind CD4. . J Virol 76:, 7903–7909. [CrossRef][PubMed]
    [Google Scholar]
  50. Ryzhova E. V., Crino P., Shawver L., Westmoreland S. V., Lackner A. A., González-Scarano F.. ( 2002b;). Simian immunodeficiency virus encephalitis: analysis of envelope sequences from individual brain multinucleated giant cells and tissue samples. . Virology 297:, 57–67. [CrossRef][PubMed]
    [Google Scholar]
  51. Salemi M., Lamers S. L., Yu S., de Oliveira T., Fitch W. M., McGrath M. S.. ( 2005;). Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. . J Virol 79:, 11343–11352. [CrossRef][PubMed]
    [Google Scholar]
  52. Salemi M., Burkhardt B. R., Gray R. R., Ghaffari G., Sleasman J. W., Goodenow M. M.. ( 2007;). Phylodynamics of HIV-1 in lymphoid and non-lymphoid tissues reveals a central role for the thymus in emergence of CXCR4-using quasispecies. . PLoS ONE 2:, e950. [CrossRef][PubMed]
    [Google Scholar]
  53. Salemi M., Lamers S. L., Huysentruyt L. C., Galligan D., Gray R. R., Morris A., McGrath M. S.. ( 2009a;). Distinct patterns of HIV-1 evolution within metastatic tissues in patients with non-Hodgkins lymphoma. . PLoS ONE 4:, e8153. [CrossRef][PubMed]
    [Google Scholar]
  54. Salemi M., Vandamme A.-M., Lemey P.. ( 2009b;). The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  55. Schmitz J. E., Kuroda M. J., Santra S., Sasseville V. G., Simon M. A., Lifton M. A., Racz P., Tenner-Racz K., Dalesandro M.. & other authors ( 1999;). Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. . Science 283:, 857–860. [CrossRef][PubMed]
    [Google Scholar]
  56. Shriner D., Rodrigo A. G., Nickle D. C., Mullins J. I.. ( 2004;). Pervasive genomic recombination of HIV-1 in vivo. . Genetics 167:, 1573–1583. [CrossRef][PubMed]
    [Google Scholar]
  57. Simioni S., Cavassini M., Annoni J. M., Rimbault Abraham A., Bourquin I., Schiffer V., Calmy A., Chave J. P., Giacobini E.. & other authors ( 2010;). Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. . AIDS 24:, 1243–1250.[PubMed]
    [Google Scholar]
  58. Slatkin M.. ( 1989;). Detecting small amounts of gene flow from phylogenies of alleles. . Genetics 121:, 609–612.[PubMed]
    [Google Scholar]
  59. Smith D. M., Zárate S., Shao H., Pillai S. K., Letendre S. L., Wong J. K., Richman D. D., Frost S. D., Ellis R. J..HNRC Group ( 2009;). Pleocytosis is associated with disruption of HIV compartmentalization between blood and cerebral spinal fluid viral populations. . Virology 385:, 204–208. [CrossRef][PubMed]
    [Google Scholar]
  60. Soulas C., Conerly C., Kim W. K., Burdo T. H., Alvarez X., Lackner A. A., Williams K. C.. ( 2011;). Recently infiltrating MAC387+ monocytes/macrophages a third macrophage population involved in SIV and HIV encephalitic lesion formation. . Am J Pathol 178:, 2121–2135. [CrossRef][PubMed]
    [Google Scholar]
  61. Strauss-Ayali D., Conrad S. M., Mosser D. M.. ( 2007;). Monocyte subpopulations and their differentiation patterns during infection. . J Leukoc Biol 82:, 244–252. [CrossRef][PubMed]
    [Google Scholar]
  62. Strickland S. L., Gray R. R., Lamers S. L., Burdo T. H., Huenink E., Nolan D. J., Nowlin B., Alvarez X., Midkiff C. C.. & other authors ( 2012;). Efficient transmission and persistence of low-frequency SIVmac251 variants in CD8-depleted rhesus macaques with different neuropathology. . J Gen Virol 93:, 925–938. [CrossRef][PubMed]
    [Google Scholar]
  63. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  64. von Gegerfelt A., Valentin A., Alicea C., Van Rompay K. K., Marthas M. L., Montefiori D. C., Pavlakis G. N., Felber B. K.. ( 2010;). Emergence of simian immunodeficiency virus-specific cytotoxic CD4+ T cells and increased humoral responses correlate with control of rebounding viremia in CD8-depleted macaques infected with Rev-independent live-attenuated simian immunodeficiency virus. . J Immunol 185:, 3348–3358. [CrossRef][PubMed]
    [Google Scholar]
  65. Wertheim J. O., Worobey M.. ( 2009;). Dating the age of the SIV lineages that gave rise to HIV-1 and HIV-2. . PLOS Comput Biol 5:, e1000377. [CrossRef][PubMed]
    [Google Scholar]
  66. Westmoreland S. V., Halpern E., Lackner A. A.. ( 1998;). Simian immunodeficiency virus encephalitis in rhesus macaques is associated with rapid disease progression. . J Neurovirol 4:, 260–268. [CrossRef][PubMed]
    [Google Scholar]
  67. Williams K., Burdo T. H.. ( 2012;). Monocyte mobilization, activation markers, and unique macrophage populations in the brain: observations from SIV infected monkeys are informative with regard to pathogenic mechanisms of HIV infection in humans. . J Neuroimmune Pharmacol 7:, 363–371. [CrossRef][PubMed]
    [Google Scholar]
  68. Williams K. C., Hickey W. F.. ( 2002;). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. . Annu Rev Neurosci 25:, 537–562. [CrossRef][PubMed]
    [Google Scholar]
  69. Wong J. K., Ignacio C. C., Torriani F., Havlir D., Fitch N. J., Richman D. D.. ( 1997;). In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. . J Virol 71:, 2059–2071.[PubMed]
    [Google Scholar]
  70. Woods S. P., Moore D. J., Weber E., Grant I.. ( 2009;). Cognitive neuropsychology of HIV-associated neurocognitive disorders. . Neuropsychol Rev 19:, 152–168. [CrossRef][PubMed]
    [Google Scholar]
  71. Zhao L., Galligan D. C., Lamers S. L., Yu S., Shagrun L., Salemi M., McGrath M. S.. ( 2009;). High level HIV-1 DNA concentrations in brain tissues differentiate patients with post-HAART AIDS dementia complex or cardiovascular disease from those with AIDS. . Sci China C Life Sci 52:, 651–656. [CrossRef][PubMed]
    [Google Scholar]
  72. Zink M. C., Spelman J. P., Robinson R. B., Clements J. E.. ( 1998;). SIV infection of macaques–modeling the progression to AIDS dementia. . J Neurovirol 4:, 249–259. [CrossRef][PubMed]
    [Google Scholar]
  73. Zink M. C., Laast V. A., Helke K. L., Brice A. K., Barber S. A., Clements J. E., Mankowski J. L.. ( 2006;). From mice to macaques – animal models of HIV nervous system disease. . Curr HIV Res 4:, 293–305. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.070318-0
Loading
/content/journal/jgv/10.1099/vir.0.070318-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error