1887

Abstract

Human immunodeficiency virus type 2 (HIV-2) infects about two million people worldwide. HIV-2 has fewer treatment options than HIV-1, yet may evolve drug resistance more quickly. We have analysed several novel drugs for anti-HIV-2 activity. It was observed that 5-azacytidine, clofarabine, gemcitabine and resveratrol have potent anti-HIV-2 activity. The EC values for 5-azacytidine, clofarabine and resveratrol were found to be significantly lower with HIV-2 than with HIV-1. A time-of-addition assay was used to analyse the ability of these drugs to interfere with HIV-2 replication. Reverse transcription was the likely target for antiretroviral activity. Taken together, several novel drugs have been discovered to have activity against HIV-2. Based upon their known activities, these drugs may elicit enhanced HIV-2 mutagenesis and therefore be useful for inducing HIV-2 lethal mutagenesis. In addition, the data are consistent with HIV-2 reverse transcriptase being more sensitive than HIV-1 reverse transcriptase to dNTP pool alterations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069864-0
2014-12-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2778.html?itemId=/content/journal/jgv/10.1099/vir.0.069864-0&mimeType=html&fmt=ahah

References

  1. Ahn J. , Hao C. , Yan J. , DeLucia M. , Mehrens J. , Wang C. , Gronenborn A. M. , Skowronski J. . ( 2012; ). HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1. . J Biol Chem 287:, 12550–12558. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amie S. M. , Daly M. B. , Noble E. , Schinazi R. F. , Bambara R. A. , Kim B. . ( 2013; ). Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels. . J Biol Chem 288:, 20683–20691. [CrossRef] [PubMed]
    [Google Scholar]
  3. Andreatta K. , Miller M. D. , White K. L. . ( 2013; ). HIV-2 antiviral potency and selection of drug resistance mutations by the integrase strand transfer inhibitor elvitegravir and NRTIs emtricitabine and tenofovir in vitro. . J Acquir Immune Defic Syndr 62:, 367–374. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baldauf H. M. , Pan X. , Erikson E. , Schmidt S. , Daddacha W. , Burggraf M. , Schenkova K. , Ambiel I. , Wabnitz G. . & other authors ( 2012; ). SAMHD1 restricts HIV-1 infection in resting CD4+ T cells. . Nat Med 18:, 1682–1687. [CrossRef] [PubMed]
    [Google Scholar]
  5. Balzarini J. . ( 2004; ). Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. . Curr Top Med Chem 4:, 921–944.[PubMed] [CrossRef]
    [Google Scholar]
  6. Biron F. , Lucht F. , Peyramond D. , Fresard A. , Vallet T. , Nugier F. , Grange J. , Malley S. , Hamedi-Sangsari F. , Vila J. . ( 1995; ). Anti-HIV activity of the combination of didanosine and hydroxyurea in HIV-1-infected individuals. . J Acquir Immune Defic Syndr Hum Retrovirol 10:, 36–40. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bourée P. , Lamour P. , Bisaro F. , Didier E. . ( 1995; ). [Study of an HIV positive, tropical origin population in a refugee centre in France]. . Bull Soc Pathol Exot 88:, 24–28 (in French).[PubMed]
    [Google Scholar]
  8. Boyer P. L. , Sarafianos S. G. , Clark P. K. , Arnold E. , Hughes S. H. . ( 2006; ). Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance?. PLoS Pathog 2:, e10. [CrossRef] [PubMed]
    [Google Scholar]
  9. Boyer P. L. , Clark P. K. , Hughes S. H. . ( 2012; ). HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. . J Virol 86:, 5885–5894. [CrossRef] [PubMed]
    [Google Scholar]
  10. Campbell-Yesufu O. T. , Gandhi R. T. . ( 2011; ). Update on human immunodeficiency virus (HIV)-2 infection. . Clin Infect Dis 52:, 780–787. [CrossRef] [PubMed]
    [Google Scholar]
  11. Clavel F. , Guyader M. , Guétard D. , Sallé M. , Montagnier L. , Alizon M. . ( 1986; ). Molecular cloning and polymorphism of the human immune deficiency virus type 2. . Nature 324:, 691–695. [CrossRef] [PubMed]
    [Google Scholar]
  12. Clouser C. L. , Patterson S. E. , Mansky L. M. . ( 2010; ). Exploiting drug repositioning for discovery of a novel HIV combination therapy. . J Virol 84:, 9301–9309. [CrossRef] [PubMed]
    [Google Scholar]
  13. Clouser C. L. , Holtz C. M. , Mullett M. , Crankshaw D. L. , Briggs J. E. , Chauhan J. , VanHoutan I. M. , Patterson S. E. , Mansky L. M. . ( 2011; ). Analysis of the ex vivo and in vivo antiretroviral activity of gemcitabine. . PLoS ONE 6:, e15840. [CrossRef] [PubMed]
    [Google Scholar]
  14. Clouser C. L. , Chauhan J. , Bess M. A. , van Oploo J. L. , Zhou D. , Dimick-Gray S. , Mansky L. M. , Patterson S. E. . ( 2012a; ). Anti-HIV-1 activity of resveratrol derivatives and synergistic inhibition of HIV-1 by the combination of resveratrol and decitabine. . Bioorg Med Chem Lett 22:, 6642–6646. [CrossRef] [PubMed]
    [Google Scholar]
  15. Clouser C. L. , Holtz C. M. , Mullett M. , Crankshaw D. L. , Briggs J. E. , O’Sullivan M. G. , Patterson S. E. , Mansky L. M. . ( 2012b; ). Activity of a novel combined antiretroviral therapy of gemcitabine and decitabine in a mouse model for HIV-1. . Antimicrob Agents Chemother 56:, 1942–1948. [CrossRef] [PubMed]
    [Google Scholar]
  16. Costarelli S. , Torti C. , Rodella A. , Baldanti F. , Paolucci S. , Lapadula G. , Manca N. , Quiros-Roldan E. , Izzo I. , Carosi G. . ( 2008; ). Screening and management of HIV-2-infected individuals in northern Italy. . AIDS Patient Care STDS 22:, 489–494. [CrossRef] [PubMed]
    [Google Scholar]
  17. Daelemans D. , Pauwels R. , De Clercq E. , Pannecouque C. . ( 2011; ). A time-of-drug addition approach to target identification of antiviral compounds. . Nat Protoc 6:, 925–933. [CrossRef] [PubMed]
    [Google Scholar]
  18. Dapp M. J. , Clouser C. L. , Patterson S. , Mansky L. M. . ( 2009; ). 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. . J Virol 83:, 11950–11958. [CrossRef] [PubMed]
    [Google Scholar]
  19. Dapp M. J. , Patterson S. E. , Mansky L. M. . ( 2013; ). Back to the future: revisiting HIV-1 lethal mutagenesis. . Trends Microbiol 21:, 56–62. [CrossRef] [PubMed]
    [Google Scholar]
  20. Diamond T. L. , Roshal M. , Jamburuthugoda V. K. , Reynolds H. M. , Merriam A. R. , Lee K. Y. , Balakrishnan M. , Bambara R. A. , Planelles V. . & other authors ( 2004; ). Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase. . J Biol Chem 279:, 51545–51553. [CrossRef] [PubMed]
    [Google Scholar]
  21. Frank I. , Bosch R. J. , Fiscus S. , Valentine F. , Flexner C. , Segal Y. , Ruan P. , Gulick R. , Wood K. . & other authors ( 2004; ). Activity, safety, and immunological effects of hydroxyurea added to didanosine in antiretroviral-naive and experienced HIV type 1-infected subjects: a randomized, placebo-controlled trial, ACTG 307. . AIDS Res Hum Retroviruses 20:, 916–926. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gottlieb G. S. , Badiane N. M. , Hawes S. E. , Fortes L. , Toure M. , Ndour C. T. , Starling A. K. , Traore F. , Sall F. . & other authors ( 2009; ). Emergence of multiclass drug-resistance in HIV-2 in antiretroviral-treated individuals in Senegal: implications for HIV-2 treatment in resouce-limited West Africa. . Clin Infect Dis 48:, 476–483. [CrossRef] [PubMed]
    [Google Scholar]
  23. Harris K. S. , Brabant W. , Styrchak S. , Gall A. , Daifuku R. . ( 2005; ). KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. . Antiviral Res 67:, 1–9. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kim B. , Nguyen L. A. , Daddacha W. , Hollenbaugh J. A. . ( 2012; ). Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. . J Biol Chem 287:, 21570–21574. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lahouassa H. , Daddacha W. , Hofmann H. , Ayinde D. , Logue E. C. , Dragin L. , Bloch N. , Maudet C. , Bertrand M. . & other authors ( 2012; ). SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. . Nat Immunol 13:, 223–228. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lori F. , Malykh A. G. , Foli A. , Maserati R. , De Antoni A. , Minoli L. , Padrini D. , Degli Antoni A. M. , Barchi E. . & other authors ( 1997; ). Combination of a drug targeting the cell with a drug targeting the virus controls human immunodeficiency virus type 1 resistance. . AIDS Res Hum Retroviruses 13:, 1403–1409. [CrossRef] [PubMed]
    [Google Scholar]
  27. MacNeil A. , Sarr A. D. , Sankalé J. L. , Meloni S. T. , Mboup S. , Kanki P. . ( 2007; ). Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. . J Virol 81:, 5325–5330. [CrossRef] [PubMed]
    [Google Scholar]
  28. Menéndez-Arias L. , Alvarez M. . ( 2014; ). Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. . Antiviral Res 102:, 70–86. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mullins J. I. , Heath L. , Hughes J. P. , Kicha J. , Styrchak S. , Wong K. G. , Rao U. , Hansen A. , Harris K. S. . & other authors ( 2011; ). Mutation of HIV-1 genomes in a clinical population treated with the mutagenic nucleoside KP1461. . PLoS ONE 6:, e15135. [CrossRef] [PubMed]
    [Google Scholar]
  30. Nguyen L. A. , Kim D. H. , Daly M. B. , Allan K. C. , Kim B. . ( 2014; ). Host SAMHD1 protein promotes HIV-1 recombination in macrophages. . J Biol Chem 289:, 2489–2496. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ntemgwa M. L. , d’Aquin Toni T. , Brenner B. G. , Camacho R. J. , Wainberg M. A. . ( 2009; ). Antiretroviral drug resistance in human immunodeficiency virus type 2. . Antimicrob Agents Chemother 53:, 3611–3619. [CrossRef] [PubMed]
    [Google Scholar]
  32. Post K. , Guo J. , Howard K. J. , Powell M. D. , Miller J. T. , Hizi A. , Le Grice S. F. , Levin J. G. . ( 2003; ). Human immunodeficiency virus type 2 reverse transcriptase activity in model systems that mimic steps in reverse transcription. . J Virol 77:, 7623–7634. [CrossRef] [PubMed]
    [Google Scholar]
  33. Rawson J. M. , Heineman R. H. , Beach L. B. , Martin J. L. , Schnettler E. K. , Dapp M. J. , Patterson S. E. , Mansky L. M. . ( 2013; ). 5,6-Dihydro-5-aza-2′-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors. . Bioorg Med Chem 21:, 7222–7228. [CrossRef] [PubMed]
    [Google Scholar]
  34. Rey M. A. , Krust B. , Laurent A. G. , Guétard D. , Montagnier L. , Hovanessian A. G. . ( 1989; ). Characterization of an HIV-2-related virus with a smaller sized extracellular envelope glycoprotein. . Virology 173:, 258–267. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rodés B. , Holguín A. , Soriano V. , Dourana M. , Mansinho K. , Antunes F. , González-Lahoz J. . ( 2000; ). Emergence of drug resistance mutations in human immunodeficiency virus type 2-infected subjects undergoing antiretroviral therapy. . J Clin Microbiol 38:, 1370–1374.[PubMed]
    [Google Scholar]
  36. Roquebert B. , Damond F. , Collin G. , Matheron S. , Peytavin G. , Bénard A. , Campa P. , Chêne G. , Brun-Vézinet F. . & other authors ( 2008; ). HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. . J Antimicrob Chemother 62:, 914–920. [CrossRef] [PubMed]
    [Google Scholar]
  37. Smith R. A. , Gottlieb G. S. , Anderson D. J. , Pyrak C. L. , Preston B. D. . ( 2008; ). Human immunodeficiency virus types 1 and 2 exhibit comparable sensitivities to Zidovudine and other nucleoside analog inhibitors in vitro . . Antimicrob Agents Chemother 52:, 329–332. [CrossRef] [PubMed]
    [Google Scholar]
  38. Smith R. A. , Anderson D. J. , Pyrak C. L. , Preston B. D. , Gottlieb G. S. . ( 2009; ). Antiretroviral drug resistance in HIV-2: three amino acid changes are sufficient for classwide nucleoside analogue resistance. . J Infect Dis 199:, 1323–1326. [CrossRef] [PubMed]
    [Google Scholar]
  39. Smith R. A. , Raugi D. N. , Kiviat N. B. , Hawes S. E. , Mullins J. I. , Sow P. S. , Gottlieb G. S. . University of Washington-Dakar HIV-2 Study Group ( 2011; ). Phenotypic susceptibility of HIV-2 to raltegravir: integrase mutations Q148R and N155H confer raltegravir resistance. . AIDS 25:, 2235–2241. [CrossRef] [PubMed]
    [Google Scholar]
  40. Soares R. S. , Tendeiro R. , Foxall R. B. , Baptista A. P. , Cavaleiro R. , Gomes P. , Camacho R. , Valadas E. , Doroana M. . & other authors ( 2011; ). Cell-associated viral burden provides evidence of ongoing viral replication in aviremic HIV-2-infected patients. . J Virol 85:, 2429–2438. [CrossRef] [PubMed]
    [Google Scholar]
  41. St Gelais C. , de Silva S. , Amie S. M. , Coleman C. M. , Hoy H. , Hollenbaugh J. A. , Kim B. , Wu L. . ( 2012; ). SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons. . Retrovirology 9:, 105. [CrossRef] [PubMed]
    [Google Scholar]
  42. van der Ende M. E. , Kroes A. C. , Buitenwerf J. , van der Poel C. L. . ( 1990; ). [Aids caused by HIV-2 in The Netherlands]. . Ned Tijdschr Geneeskd 134:, 495–497 (in Dutch).[PubMed]
    [Google Scholar]
  43. Witvrouw M. , Pannecouque C. , Switzer W. M. , Folks T. M. , De Clercq E. , Heneine W. . ( 2004; ). Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. . Antivir Ther 9:, 57–65.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069864-0
Loading
/content/journal/jgv/10.1099/vir.0.069864-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error