1887

Abstract

Cloning and sequencing of cytoplasmic polyhedrosis virus (CPV) genome segment S4 showed that it consists of 3410 nt with a single ORF of 1110 aa which could encode a protein of ~127 kDa (p127). Bioinformatics analysis showed the presence of a 5′ RNA triphosphatase (RTPase) domain (LRDR), a -adenosyl--methionine (SAM)-binding (GxGxG) motif and the KDKE tetrad of 2′--methyltransferase (MTase), which suggested that S4 may encode RTPase and MTase. The ORF of S4 was expressed in as a His-tagged fusion protein and purified by nickel-nitrilotriacetic acid affinity chromatography. Biochemical analysis of recombinant p127 showed its RTPase as well as SAM-dependent guanine -and ribose 2′--MTase activities. A MTase assay using transcribed CPV S2 RNA having a 5′ G*pppG end showed that guanine methylation occurred prior to the ribose 2′- methylation to yield a mGpppG/mGpppGm RNA cap. Mutagenesis of the SAM-binding (GxGxG) motif (G831A) completely abolished - and 2′--MTase activities, indicating the importance of these residues for capping. From the kinetic analysis, the values of -MTase for SAM and RNA were calculated as 4.41 and 0.39 µM, respectively. These results suggested that CPV S4-encoded p127 catalyses RTPase and two cap methylation reactions for capping the 5′ end of viral RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069716-0
2015-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/1/95.html?itemId=/content/journal/jgv/10.1099/vir.0.069716-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  2. Assenberg R., Ren J., Verma A., Walter T. S., Alderton D., Hurrelbrink R. J., Fuller S. D., Bressanelli S., Owens R. J.. & other authors ( 2007;). Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. . J Gen Virol 88:, 2228–2236. [CrossRef][PubMed]
    [Google Scholar]
  3. Attoui H., Fang Q., Mohd Jaffar F., Cantalobe J. F., Biagini P., de Micco P., de Lamballerie X.. ( 2002;). Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp virus, Stripped bass virus and Golden ide reovirus (genus Aquareovirus, family Reoviridae). . J Gen Virol 83:, 1941–1951.[PubMed]
    [Google Scholar]
  4. Bartelma G., Padmanabhan R.. ( 2002;). Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. . Virology 299:, 122–132. [CrossRef][PubMed]
    [Google Scholar]
  5. Bartlett J. A., Joklik W. K.. ( 1988;). The sequence of the reovirus serotype 3 L3 genome segment which encodes the major core protein lambda 1. . Virology 167:, 31–37. [CrossRef][PubMed]
    [Google Scholar]
  6. Benarroch D., Qiu Z. R., Schwer B., Shuman S.. ( 2009;). Characterization of a mimivirus RNA cap guanine-N2 methyltransferase. . RNA 15:, 666–674. [CrossRef][PubMed]
    [Google Scholar]
  7. Bisaillon M., Lemay G.. ( 1997;). Characterization of the reovirus λ1 protein RNA 5′-triphosphatase activity. . J Biol Chem 272:, 29954–29957. [CrossRef][PubMed]
    [Google Scholar]
  8. Bisaillon M., Bergeron J., Lemay G.. ( 1997;). Characterization of the nucleoside triphosphate phosphohydrolase and helicase activities of the reovirus λ1 protein. . J Biol Chem 272:, 18298–18303. [CrossRef][PubMed]
    [Google Scholar]
  9. Biswas P., Kundu A., Ghosh A. K.. ( 2014;). Genome segment 5 of Antheraea mylitta cytoplasmic polyhedrosis virus encodes a bona fide guanylyltransferase. . Virol J 11:, 53–65. [CrossRef][PubMed]
    [Google Scholar]
  10. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  11. Chakrabarti M., Ghorai S., Mani S. K., Ghosh A. K.. ( 2010;). Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus. . Virol J 7:, 181–191. [CrossRef][PubMed]
    [Google Scholar]
  12. Chavali V. R., Ghosh A. K.. ( 2007;). Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein. . Virus Genes 35:, 433–441. [CrossRef][PubMed]
    [Google Scholar]
  13. Chavali V. R., Madhurantakam C., Ghorai S., Roy S., Das A. K., Ghosh A. K.. ( 2008;). Genome segment 6 of Antheraea mylitta cypovirus encodes a structural protein with ATPase activity. . Virology 377:, 7–18. [CrossRef][PubMed]
    [Google Scholar]
  14. Cheng L., Sun J., Zhang K., Mou Z., Huang X., Ji G., Sun F., Zhang J., Zhu P.. ( 2011;). Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. . Proc Natl Acad Sci U S A 108:, 1373–1378. [CrossRef][PubMed]
    [Google Scholar]
  15. Chomczynski P., Sacchi N.. ( 1995;). Preparation and analysis of RNA. . In Current Protocols in Molecular Biology, pp. 4.2.4–4.2.6. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J.G., Smith J. A., Struhl K... New York:: Wiley;.
    [Google Scholar]
  16. Chung K. Y., Dong H., Chao A. T., Shi P. Y., Lescar J., Lim S. P.. ( 2010;). Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2′-O methyltransferase activity in dengue virus. . Virology 402:, 52–60. [CrossRef][PubMed]
    [Google Scholar]
  17. De la Peña M., Kyrieleis O. J., Cusack S.. ( 2007;). Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase. . EMBO J 26:, 4913–4925. [CrossRef][PubMed]
    [Google Scholar]
  18. Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A.. & other authors ( 2011;). Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. . PLoS Pathog 7:, e1002059. [CrossRef][PubMed]
    [Google Scholar]
  19. Dong H., Ren S., Zhang B., Zhou Y., Puig-Basagoiti F., Li H., Shi P. Y.. ( 2008;). West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. . J Virol 82:, 4295–4307. [CrossRef][PubMed]
    [Google Scholar]
  20. Fabrega C., Hausmann S., Shen V., Shuman S., Lima C. D.. ( 2004;). Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. . Mol Cell 13:, 77–89. [CrossRef][PubMed]
    [Google Scholar]
  21. Furuichi Y., Miura K.. ( 1975;). A blocked structure at the 5′ terminus of mRNA from cytoplasmic polyhedrosis virus. . Nature 253:, 374–375. [CrossRef][PubMed]
    [Google Scholar]
  22. Furuichi Y., Shatkin A. J.. ( 2000;). Viral and cellular mRNA capping: past and prospects. . Adv Virus Res 55:, 135–184. [CrossRef][PubMed]
    [Google Scholar]
  23. Garnier J., Gibrat J. F., Robson B.. ( 1996;). gor method for predicting protein secondary structure from amino acid sequence. . Methods Enzymol 266:, 540–553. [CrossRef][PubMed]
    [Google Scholar]
  24. Ghorai S., Chakrabarti M., Roy S., Chavali V. R. M., Bagchi A., Ghosh A. K.. ( 2010;). Molecular characterization of genome segment 2 encoding RNA dependent RNA polymerase of Antheraea mylitta cytoplasmic polyhedrosis virus. . Virology 404:, 21–31. [CrossRef][PubMed]
    [Google Scholar]
  25. Gouet P., Courcelle E., Stuart D. I., Métoz F.. ( 1999;). ESPript: analysis of multiple sequence alignments in PostScript. . Bioinformatics 15:, 305–308. [CrossRef][PubMed]
    [Google Scholar]
  26. Håkansson K., Doherty A. J., Shuman S., Wigley D. B.. ( 1997;). X-ray crystallography reveals a large conformational change during guanylyl transfer by RNA capping enzymes. . Cell 89:, 545–553. [CrossRef][PubMed]
    [Google Scholar]
  27. Hayashi Y., Bird F. T.. ( 1970;). The isolation of cytoplasmic polyhedrosis virus from the white-marked tussock moth, Orgyia leucostigma (Smith). . Can J Microbiol 16:, 695–701. [CrossRef][PubMed]
    [Google Scholar]
  28. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. ( 1989;). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. . Gene 77:, 51–59. [CrossRef][PubMed]
    [Google Scholar]
  29. Hodel A. E., Gershon P. D., Shi X., Quiocho F. A.. ( 1996;). The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. . Cell 85:, 247–256. [CrossRef][PubMed]
    [Google Scholar]
  30. Issur M., Geiss B. J., Bougie I., Picard-Jean F., Despins S., Mayette J., Hobdey S. E., Bisaillon M.. ( 2009;). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. . RNA 15:, 2340–2350. [CrossRef][PubMed]
    [Google Scholar]
  31. Jangam S. R., Chakrabarti M., Ghosh A. K.. ( 2006;). Molecular cloning, expression and analysis of Antheraea mylitta cypovirus genome segments 8 and 11. . Int J Virol 3:, 60–72. [CrossRef]
    [Google Scholar]
  32. Jolly M. S., Sen S. K., Ahsan M. M.. ( 1974;). Tasar Culture. Bombay:: Ambika Publishers;.
    [Google Scholar]
  33. Kim J., Parker J. S., Murray K. E., Nibert M. L.. ( 2004;). Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2. . J Biol Chem 279:, 4394–4403. [CrossRef][PubMed]
    [Google Scholar]
  34. Koonin E. V., Moss B.. ( 2010;). Viruses know more than one way to don a cap. . Proc Natl Acad Sci U S A 107:, 3283–3284. [CrossRef][PubMed]
    [Google Scholar]
  35. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. . Nature 227:, 680–685. [CrossRef][PubMed]
    [Google Scholar]
  36. Lambden P. R., Cooke S. J., Caul E. O., Clarke I. N.. ( 1992;). Cloning of noncultivatable human rotavirus by single primer amplification. . J Virol 66:, 1817–1822.[PubMed]
    [Google Scholar]
  37. Liao H.-J., Stollar V.. ( 1997a;). Characterization of JKT-7400, an orbivirus which grows in Aedes albopictus mosquito cells: evidence pointing to a minor virion protein, VP6, as the RNA guanylyltransferase. . Virology 228:, 19–28. [CrossRef][PubMed]
    [Google Scholar]
  38. Liao H.-J., Stollar V.. ( 1997b;). Methyltransferase activity of the insect orbivirus JKT-7400: photoaffinity labeling of a minor virion protein, VP4, with S-adenosylmethionine. . Virology 235:, 235–240. [CrossRef][PubMed]
    [Google Scholar]
  39. Martin J. L., McMillan F. M.. ( 2002;). SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. . Curr Opin Struct Biol 12:, 783–793. [CrossRef][PubMed]
    [Google Scholar]
  40. Martinez-Costas J., Sutton G., Ramadevi N., Roy P.. ( 1998;). Guanylyltransferase and RNA 5′-triphosphatase activities of the purified expressed VP4 protein of bluetongue virus. . J Mol Biol 280:, 859–866. [CrossRef][PubMed]
    [Google Scholar]
  41. Mertens P. P. C., Rao S., Zhou Z. H.. ( 2004;). Cypovirus. . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses, pp. 522–533. Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball L. A... London:: Academic Press;.
    [Google Scholar]
  42. Noble S., Nibert M. L.. ( 1997a;). Core protein mu2 is a second determinant of nucleoside triphosphatase activities by reovirus cores. . J Virol 71:, 7728–7735.[PubMed]
    [Google Scholar]
  43. Noble S., Nibert M. L.. ( 1997b;). Characterization of an ATPase activity in reovirus cores and its genetic association with core-shell protein lambda1. . J Virol 71:, 2182–2191.[PubMed]
    [Google Scholar]
  44. Payne C. C., Mertens P. P. C.. ( 1983;). Cytoplasmic polyhedrosis virus. . In The Reoviridae, pp. 425–504. Edited by Joklok W. K... New York:: Plenum;. [CrossRef]
    [Google Scholar]
  45. Peyrane F., Selisko B., Decroly E., Vasseur J. J., Benarroch D., Canard B., Alvarez K.. ( 2007;). High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2’O positions. . Nucleic Acids Res 35:, e26. [CrossRef][PubMed]
    [Google Scholar]
  46. Qanungo K. R., Kundu S. C., Ghosh A. K.. ( 2000;). Characterization of cypovirus isolates from tropical and temperate Indian saturniidae silkworms. . Acta Virol 44:, 349–357.[PubMed]
    [Google Scholar]
  47. Qanungo K. R., Kundu S. C., Mullins J. I., Ghosh A. K.. ( 2002;). Molecular cloning and characterization of Antheraea mylitta cytoplasmic polyhedrosis virus genome segment 9. . J Gen Virol 83:, 1483–1491.[PubMed]
    [Google Scholar]
  48. Ramadevi N., Burroughs N. J., Mertens P. P. C., Jones I. M., Roy P.. ( 1998;). Capping and methylation of mRNA by purified recombinant VP4 protein of bluetongue virus. . Proc Natl Acad Sci U S A 95:, 13537–13542. [CrossRef][PubMed]
    [Google Scholar]
  49. Ray D., Shah A., Tilgner M., Guo Y., Zhao Y., Dong H., Deas T. S., Zhou Y., Li H., Shi P. Y.. ( 2006;). West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. . J Virol 80:, 8362–8370. [CrossRef][PubMed]
    [Google Scholar]
  50. Selisko B., Peyrane F. F., Canard B., Alvarez K., Decroly E.. ( 2010;). Biochemical characterization of the (nucleoside-2′O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides 7MeGpppACn and GpppACn. . J Gen Virol 91:, 112–121. [CrossRef][PubMed]
    [Google Scholar]
  51. Sinha-Datta U., Chavali V. R., Ghosh A. K.. ( 2005;). Molecular cloning and characterization of Antheraea mylitta cytoplasmic polyhedrosis virus polyhedrin gene and its variant forms. . Biochem Biophys Res Commun 332:, 710–718. [CrossRef][PubMed]
    [Google Scholar]
  52. Su Y. P., Shien J. H., Liu H. J., Yin H. S., Lee L. H.. ( 2007;). Avian reovirus core protein µA expressed in Escherichia coli possesses both NTPase and RTPase activities. . J Gen Virol 88:, 1797–1805. [CrossRef][PubMed]
    [Google Scholar]
  53. Sutton G., Grimes J. M., Stuart D. I., Roy P.. ( 2007;). Bluetongue virus VP4 is an RNA-capping assembly line. . Nat Struct Mol Biol 14:, 449–451. [CrossRef][PubMed]
    [Google Scholar]
  54. Trask S. D., Ogden K. M., Patton J. T.. ( 2012;). Interactions among capsid proteins orchestrate rotavirus particle functions. . Curr Opin Virol 2:, 373–379. [CrossRef][PubMed]
    [Google Scholar]
  55. Vasiljeva L., Merits A., Auvinen P., Kääriäinen L.. ( 2000;). Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. . J Biol Chem 275:, 17281–17287. [CrossRef][PubMed]
    [Google Scholar]
  56. Vasquez-Del Carpio R., Gonzalez-Nilo F. D., Riadi G., Taraporewala Z. F., Patton J. T.. ( 2006;). Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities. . J Mol Biol 362:, 539–554. [CrossRef][PubMed]
    [Google Scholar]
  57. Wang C. C., Huang Z. S., Chiang P. L., Chen C. T., Wu H. N.. ( 2009;). Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. . FEBS Lett 583:, 691–696. [CrossRef][PubMed]
    [Google Scholar]
  58. Wengler G., Wengler G.. ( 1993;). The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. . Virology 197:, 265–273. [CrossRef][PubMed]
    [Google Scholar]
  59. Xia Q., Jakana J., Zhang J. Q., Zhou Z. H.. ( 2003;). Structural comparisons of empty and full cytoplasmic polyhedrosis virus. Protein–RNA interactions and implications for endogenous RNA transcription mechanism. . J Biol Chem 278:, 1094–1100. [CrossRef][PubMed]
    [Google Scholar]
  60. Yang C., Ji G., Liu H., Zhang K., Liu G., Sun F., Zhu P., Cheng L.. ( 2012;). Cryo-EM structure of a transcribing cypovirus. . Proc Natl Acad Sci U S A 109:, 6118–6123. [CrossRef][PubMed]
    [Google Scholar]
  61. Yu L., Shuman S.. ( 1996;). Mutational analysis of the RNA triphosphatase component of vaccinia virus mRNA capping enzyme. . J Virol 70:, 6162–6168.[PubMed]
    [Google Scholar]
  62. Zhou Z. H., Zhang H., Jakana J., Lu X. Y., Zhang J. Q.. ( 2003;). Cytoplasmic polyhedrosis virus structure at 8 Å by electron cryomicroscopy: structural basis of capsid stability and mRNA processing regulation. . Structure 11:, 651–663. [CrossRef][PubMed]
    [Google Scholar]
  63. Zhou Y., Ray D., Zhao Y., Dong H., Ren S., Li Z., Guo Y., Bernard K. A., Shi P. Y., Li H.. ( 2007;). Structure and function of flavivirus NS5 methyltransferase. . J Virol 81:, 3891–3903. [CrossRef][PubMed]
    [Google Scholar]
  64. Zhu B., Yang C., Liu H., Cheng L., Song F., Zeng S., Huang X., Ji G., Zhu P.. ( 2014;). Identification of the active sites in the methyltransferases of a transcribing dsRNA virus. . J Mol Biol 426:, 2167–2174. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069716-0
Loading
/content/journal/jgv/10.1099/vir.0.069716-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error