A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism Open Access

Abstract

Vaccinia virus (VACV) is a large DNA virus that replicates in the cytoplasm and encodes about 200 proteins of which approximately 50 % may be non-essential for viral replication. These proteins enable VACV to suppress transcription and translation of cellular genes, to inhibit the innate immune response, to exploit microtubule- and actin-based transport for virus entry and spread, and to subvert cellular metabolism for the benefit of the virus. VACV strain WR protein C16 induces stabilization of the hypoxia-inducible transcription factor (HIF)-1α by binding to the cellular oxygen sensor prolylhydroxylase domain-containing protein (PHD)2. Stabilization of HIF-1α is induced by several virus groups, but the purpose and consequences are unclear. Here, H-NMR spectroscopy and liquid chromatography-mass spectrometry are used to investigate the metabolic alterations during VACV infection in HeLa and 2FTGH cells. The role of C16 in such alterations was examined by comparing infection to WT VACV (strain WR) and a derivative virus lacking gene (vΔC16). Compared with uninfected cells, VACV infection caused increased nucleotide and glutamine metabolism. In addition, there were increased concentrations of glutamine derivatives in cells infected with WT VACV compared with vΔC16. This indicates that C16 contributes to enhanced glutamine metabolism and this may help preserve tricarboxylic acid cycle activity. These data show that VACV infection reprogrammes cellular energy metabolism towards increased synthesis of the metabolic precursors utilized during viral replication, and that C16 contributes to this anabolic reprogramming of the cell, probably via the stabilization of HIF-1α.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069591-0
2015-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/395.html?itemId=/content/journal/jgv/10.1099/vir.0.069591-0&mimeType=html&fmt=ahah

References

  1. Banham A. H., Smith G. L. 1992; Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. Virology 191:803–812 [View Article][PubMed]
    [Google Scholar]
  2. Broyles S. S. 1993; Vaccinia virus encodes a functional dUTPase. Virology 195:863–865 [View Article][PubMed]
    [Google Scholar]
  3. Buller R. M., Chakrabarti S., Moss B., Fredrickson T. 1988a; Cell proliferative response to vaccinia virus is mediated by VGF. Virology 164:182–192 [View Article][PubMed]
    [Google Scholar]
  4. Buller R. M., Chakrabarti S., Cooper J. A., Twardzik D. R., Moss B. 1988b; Deletion of the vaccinia virus growth factor gene reduces virus virulence. J Virol 62:866–874[PubMed]
    [Google Scholar]
  5. Carroll P. A., Kenerson H. L., Yeung R. S., Lagunoff M. 2006; Latent Kaposi’s sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol 80:10802–10812 [View Article][PubMed]
    [Google Scholar]
  6. Chen J. Q., Russo J. 2012; Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta 1826:370–384[PubMed]
    [Google Scholar]
  7. Colinas R. J., Goebel S. J., Davis S. W., Johnson G. P., Norton E. K., Paoletti E. 1990; A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. Virology 179:267–275 [View Article][PubMed]
    [Google Scholar]
  8. Darekar S., Georgiou K., Yurchenko M., Yenamandra S. P., Chachami G., Simos G., Klein G., Kashuba E. 2012; Epstein-Barr virus immortalization of human B-cells leads to stabilization of hypoxia-induced factor 1 alpha, congruent with the Warburg effect. PLoS ONE 7:e42072 [View Article][PubMed]
    [Google Scholar]
  9. Daye D., Wellen K. E. 2012; Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol 23:362–369 [View Article][PubMed]
    [Google Scholar]
  10. De Silva F. S., Moss B. 2003; Vaccinia virus uracil DNA glycosylase has an essential role in DNA synthesis that is independent of its glycosylase activity: catalytic site mutations reduce virulence but not virus replication in cultured cells. J Virol 77:159–166 [View Article][PubMed]
    [Google Scholar]
  11. De Silva F. S., Moss B. 2008; Effects of vaccinia virus uracil DNA glycosylase catalytic site and deoxyuridine triphosphatase deletion mutations individually and together on replication in active and quiescent cells and pathogenesis in mice. Virol J 5:145 [View Article][PubMed]
    [Google Scholar]
  12. Diamond D. L., Syder A. J., Jacobs J. M., Sorensen C. M., Walters K. A., Proll S. C., McDermott J. E., Gritsenko M. A., Zhang Q. other authors 2010; Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6:e1000719 [View Article][PubMed]
    [Google Scholar]
  13. Fahy A. S., Clark R. H., Glyde E. F., Smith G. L. 2008; Vaccinia virus protein C16 acts intracellularly to modulate the host response and promote virulence. J Gen Virol 89:2377–2387 [View Article][PubMed]
    [Google Scholar]
  14. Fenner F., Anderson D. A., Arita I., Jezek Z., Ladnyi I. D. 1988 Smallpox and Its Eradication Geneva: World Health Organization; [View Article][PubMed]
    [Google Scholar]
  15. Ferguson B. J., Mansur D. S., Peters N. E., Ren H., Smith G. L. 2012; DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. elife 1e00047 [CrossRef]
    [Google Scholar]
  16. Filipp F. V., Scott D. A., Ronai Z. A., Osterman A. L., Smith J. W. 2012; Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res 25:375–383 [View Article][PubMed]
    [Google Scholar]
  17. Fontaine K. A., Camarda R., Lagunoff M. 2014; Vaccinia virus requires glutamine but not glucose for efficient replication. J Virol 88:4366–4374 [View Article][PubMed]
    [Google Scholar]
  18. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266, 517–563 [View Article][PubMed]
    [Google Scholar]
  19. Greseth M. D., Traktman P. 2014; De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection. PLoS Pathog 10:e1004021 [View Article][PubMed]
    [Google Scholar]
  20. Guan K. L., Broyles S. S., Dixon J. E. 1991; A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature 350:359–362 [View Article][PubMed]
    [Google Scholar]
  21. Guerra S., López-Fernández L. A., Pascual-Montano A., Muñoz M., Harshman K., Esteban M. 2003; Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J Virol 77:6493–6506 [View Article][PubMed]
    [Google Scholar]
  22. Heaton N. S., Perera R., Berger K. L., Khadka S., Lacount D. J., Kuhn R. J., Randall G. 2010; Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350 [View Article][PubMed]
    [Google Scholar]
  23. Hruby D. E., Ball L. A. 1982; Mapping and identification of the vaccinia virus thymidine kinase gene. J Virol 43:403–409[PubMed]
    [Google Scholar]
  24. Hughes S. J., Johnston L. H., de Carlos A., Smith G. L. 1991; Vaccinia virus encodes an active thymidylate kinase that complements a cdc8 mutant of Saccharomyces cerevisiae . J Biol Chem 266:20103–20109[PubMed]
    [Google Scholar]
  25. Joklik W. K., Becker Y. 1964; The replication and coating of vaccinia DNA. J Mol Biol 10:452–474 [View Article][PubMed]
    [Google Scholar]
  26. Jones E. V., Moss B. 1984; Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA. J Virol 49:72–77[PubMed]
    [Google Scholar]
  27. Kerr S. M., Smith G. L. 1989; Vaccinia virus encodes a polypeptide with DNA ligase activity. Nucleic Acids Res 17:9039–9050 [View Article][PubMed]
    [Google Scholar]
  28. Lin S., Broyles S. S. 1994; Vaccinia protein kinase 2: a second essential serine/threonine protein kinase encoded by vaccinia virus. Proc Natl Acad Sci U S A 91:7653–7657 [View Article][PubMed]
    [Google Scholar]
  29. Lin S., Chen W., Broyles S. S. 1992; The vaccinia virus B1R gene product is a serine/threonine protein kinase. J Virol 66:2717–2723[PubMed]
    [Google Scholar]
  30. Martin F. P., Dumas M. E., Wang Y., Legido-Quigley C., Yap I. K., Tang H., Zirah S., Murphy G. M., Cloarec O. other authors 2007; A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol 3:112 [View Article][PubMed]
    [Google Scholar]
  31. Mazzon M., Peters N. E., Loenarz C., Krysztofinska E. M., Ember S. W., Ferguson B. J., Smith G. L. 2013; A mechanism for induction of a hypoxic response by vaccinia virus. Proc Natl Acad Sci U S A 110:12444–12449 [View Article][PubMed]
    [Google Scholar]
  32. McFarlane S., Nicholl M. J., Sutherland J. S., Preston C. M. 2011; Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha. Virology 414:83–90 [View Article][PubMed]
    [Google Scholar]
  33. McGeoch D. J. 1990; Protein sequence comparisons show that the ‘pseudoproteases’ encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res 18:4105–4110 [View Article][PubMed]
    [Google Scholar]
  34. Metallo C. M., Gameiro P. A., Bell E. L., Mattaini K. R., Yang J., Hiller K., Jewell C. M., Johnson Z. R., Irvine D. J. other authors 2012; Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384[PubMed]
    [Google Scholar]
  35. Moore J. B., Smith G. L. 1992; Steroid hormone synthesis by a vaccinia enzyme: a new type of virus virulence factor. EMBO J 11:1973–1980[PubMed]
    [Google Scholar]
  36. Moss B. 2007; Poxviridae: the viruses and their replicaton. In Fields Virology, 5th edn. vol. 2 pp. 2905–2946 Edited by Knipe D. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  37. Moss B. 2013; Poxvirus DNA replication. Cold Spring Harb Perspect Biol 5:a010199 [View Article][PubMed]
    [Google Scholar]
  38. Mucaj V., Shay J. E., Simon M. C. 2012; Effects of hypoxia and HIFs on cancer metabolism. Int J Hematol 95:464–470 [View Article][PubMed]
    [Google Scholar]
  39. Mullen A. R., Wheaton W. W., Jin E. S., Chen P. H., Sullivan L. B., Cheng T., Yang Y., Linehan W. M., Chandel N. S., DeBerardinis R. J. 2012; Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481:385–388[PubMed]
    [Google Scholar]
  40. Nakamura M., Bodily J. M., Beglin M., Kyo S., Inoue M., Laimins L. A. 2009; Hypoxia-specific stabilization of HIF-1alpha by human papillomaviruses. Virology 387:442–448 [View Article][PubMed]
    [Google Scholar]
  41. Nasimuzzaman M., Waris G., Mikolon D., Stupack D. G., Siddiqui A. 2007; Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor. J Virol 81:10249–10257 [View Article][PubMed]
    [Google Scholar]
  42. Peters N. E., Ferguson B. J., Mazzon M., Fahy A. S., Krysztofinska E., Arribas-Bosacoma R., Pearl L. H., Ren H., Smith G. L. 2013; A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS Pathog 9:e1003649 [View Article][PubMed]
    [Google Scholar]
  43. Reading P. C., Moore J. B., Smith G. L. 2003; Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J Exp Med 197:1269–1278 [View Article][PubMed]
    [Google Scholar]
  44. Rempel R. E., Traktman P. 1992; Vaccinia virus B1 kinase: phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. J Virol 66:4413–4426[PubMed]
    [Google Scholar]
  45. Roberts L. D., Souza A. L., Gerszten R. E., Clish C. B. 2012; Targeted metabolomics. Curr Protoc Mol Biol 98:30.2.1–30.2.24[PubMed]
    [Google Scholar]
  46. Semenza G. L. 2012; Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408 [View Article][PubMed]
    [Google Scholar]
  47. Senkevich T. G., White C. L., Koonin E. V., Moss B. 2002; Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc Natl Acad Sci U S A 99:6667–6672 [View Article][PubMed]
    [Google Scholar]
  48. Shuman S., Moss B. 1987; Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. Proc Natl Acad Sci U S A 84:7478–7482 [View Article][PubMed]
    [Google Scholar]
  49. Slabaugh M., Roseman N., Davis R., Mathews C. 1988; Vaccinia virus-encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J Virol 62:519–527[PubMed]
    [Google Scholar]
  50. Smith G. L., Chan Y. S., Kerr S. M. 1989a; Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. Nucleic Acids Res 17:9051–9062 [View Article][PubMed]
    [Google Scholar]
  51. Smith G. L., de Carlos A., Chan Y. S. 1989b; Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping. Nucleic Acids Res 17:7581–7590 [View Article][PubMed]
    [Google Scholar]
  52. Smith G. L., Benfield C. T., Maluquer de Motes C., Mazzon M., Ember S. W., Ferguson B. J., Sumner R. P. 2013; Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. J Gen Virol 94:2367–2392 [View Article][PubMed]
    [Google Scholar]
  53. Sumner L. W., Amberg A., Barrett D., Beale M. H., Beger R., Daykin C. A., Fan T. W., Fiehn O., Goodacre R. other authors 2007; Proposed minimum reporting standards for chemical analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 3:211–221 [View Article][PubMed]
    [Google Scholar]
  54. Sun R. C., Denko N. C. 2014; Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19:285–292 [View Article][PubMed]
    [Google Scholar]
  55. Tang X., Zhang Q., Nishitani J., Brown J., Shi S., Le A. D. 2007; Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin Cancer Res 13:2568–2576 [View Article][PubMed]
    [Google Scholar]
  56. Tengelsen L. A., Slabaugh M. B., Bibler J. K., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology 164:121–131 [View Article][PubMed]
    [Google Scholar]
  57. Twardzik D. R., Brown J. P., Ranchalis J. E., Todaro G. J., Moss B. 1985; Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proc Natl Acad Sci U S A 82:5300–5304 [View Article][PubMed]
    [Google Scholar]
  58. van der Werf M., Takors R., Smedsgaard J., Nielsen J., Ferenci T., Portais J., Wittmann C., Hooks M., Tomassini A. other authors 2007; Standard reporting requirements for biological samples in metabolomics experiments: microbial and in vitro biology experiments. Metabolomics 3:189–194 [View Article]
    [Google Scholar]
  59. Vastag L., Koyuncu E., Grady S. L., Shenk T. E., Rabinowitz J. D. 2011; Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7:e1002124 [View Article][PubMed]
    [Google Scholar]
  60. Weir J. P., Bajszár G., Moss B. 1982; Mapping of the vaccinia virus thymidine kinase gene by marker rescue and by cell-free translation of selected mRNA. Proc Natl Acad Sci U S A 79:1210–1214 [View Article][PubMed]
    [Google Scholar]
  61. Werth N., Beerlage C., Rosenberger C., Yazdi A. S., Edelmann M., Amr A., Bernhardt W., von Eiff C., Becker K. other authors 2010; Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS ONE 5:e11576 [View Article][PubMed]
    [Google Scholar]
  62. White C. L., Weisberg A. S., Moss B. 2000; A glutaredoxin, encoded by the G4L gene of vaccinia virus, is essential for virion morphogenesis. J Virol 74:9175–9183 [View Article][PubMed]
    [Google Scholar]
  63. Wise D. R., Ward P. S., Shay J. E., Cross J. R., Gruber J. J., Sachdeva U. M., Platt J. M., DeMatteo R. G., Simon M. C., Thompson C. B. 2011; Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A 108:19611–19616 [View Article][PubMed]
    [Google Scholar]
  64. Yu Y., Clippinger A. J., Alwine J. C. 2011; Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Trends Microbiol 19:360–367 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069591-0
Loading
/content/journal/jgv/10.1099/vir.0.069591-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed