Characterization of the promoter of Free

Abstract

(GVCV) is a recently discovered DNA virus in grapevine that is closely associated with the grapevine vein clearing syndrome observed in vineyards in Missouri and surrounding states. The genome sequence of GVCV indicates that it belongs to the genus in the family . To identify the GVCV promoter, we cloned portions of the GVCV large intergenic region in front of a GFP gene present in an binary vector. GFP expression was assessed by ELISA 3 days after agroinfiltration of leaves. We found that the GVCV DNA segment between nts 7332 and 7672 directed expression of GFP and this expression was stronger than expression using the 35S promoter. It was revealed by 5′ and 3′ RACE that transcription was initiated predominantly at nt 7571 and terminated at nt 7676.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069286-0
2015-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/1/165.html?itemId=/content/journal/jgv/10.1099/vir.0.069286-0&mimeType=html&fmt=ahah

References

  1. Angel C. A., Hsieh Y.-C., Schoelz J. E. 2011; Comparative analysis of the capacity of tombusvirus P22 and P19 proteins to function as avirulence determinants in Nicotiana species. Mol Plant Microbe Interact 24:91–99 [View Article][PubMed]
    [Google Scholar]
  2. Baughman G., Howell S. H. 1988; Cauliflower mosaic virus 35S RNA leader region inhibits translation of downstream genes. Virology 167:125–135 [View Article][PubMed]
    [Google Scholar]
  3. Dasgupta I., Hull R., Eastop S., Poggi-Pollini C., Blakebrough M., Boulton M. I., Davies J. W. 1991; Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium-mediated transfer. J Gen Virol 72:1215–1221 [View Article][PubMed]
    [Google Scholar]
  4. Fütterer J., Gordon K., Bonneville J. M., Sanfaçon H., Pisan B., Penswick J., Hohn T. 1988; The leading sequence of caulimovirus large RNA can be folded into a large stem-loop structure. Nucleic Acids Res 16:8377–8390 [View Article][PubMed]
    [Google Scholar]
  5. Guo Q., Honesty S., Xu M. L., Zhang Y., Schoelz J., Qiu W. 2014; Genetic diversity and tissue and host specificity of Grapevine vein clearing virus. Phytopathology 104:539–547 [View Article][PubMed]
    [Google Scholar]
  6. Hany U., Adams I. P., Glover R., Bhat A. I., Boonham N. 2014; The complete genome sequence of Piper yellow mottle virus (PYMoV). Arch Virol 159:385–388 [View Article][PubMed]
    [Google Scholar]
  7. Huang Q., Hartung J. S. 2001; Cloning and sequence analysis of an infectious clone of Citrus yellow mosaic virus that can infect sweet orange via Agrobacterium-mediated inoculation. J Gen Virol 82:2549–2558[PubMed]
    [Google Scholar]
  8. Kalischuk M. L., Fusaro A. F., Waterhouse P. M., Pappu H. R., Kawchuk L. M. 2013; Complete genomic sequence of a Rubus yellow net virus isolate and detection of genome-wide pararetrovirus-derived small RNAs. Virus Res 178:306–313 [View Article][PubMed]
    [Google Scholar]
  9. Kreuze J. F., Perez A., Untiveros M., Quispe D., Fuentes S., Barker I., Simon R. 2009; Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7 [View Article][PubMed]
    [Google Scholar]
  10. Laney A. G., Hassan M., Tzanetakis I. E. 2012; An integrated badnavirus is prevalent in fig germplasm. Phytopathology 102:1182–1189 [View Article][PubMed]
    [Google Scholar]
  11. Loke J. C., Stahlberg E. A., Strenski D. G., Haas B. J., Wood P. C., Li Q. Q. 2005; Compilation of mRNA polyadenylation signals in Arabidopsis revealed a new signal element and potential secondary structures. Plant Physiol 138:1457–1468 [View Article][PubMed]
    [Google Scholar]
  12. Lunden S., Meng B., Avery J., Qiu W. 2010; Association of Grapevine fanleaf virus, Tomato ringspot virus and Grapevine rupestris stem pitting-associated virus with a grapevine vein-clearing complex on var. Chardonnay. Eur J Plant Pathol 126:135–144 [View Article]
    [Google Scholar]
  13. Mbanzibwa D. R., Tairo F., Gwandu C., Kullaya A., Valkonen J. P. T. 2011; First report of Sweet potato symptomless mastrevirus 1 and Sweet potato badnavirus A in sweet potatoes in Tanzania. Plant Dis 95:224 [View Article]
    [Google Scholar]
  14. Medberry S. L., Lockhart B. E., Olszewski N. E. 1990; Properties of Commelina yellow mottle virus’s complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus. Nucleic Acids Res 18:5505–5513 [View Article][PubMed]
    [Google Scholar]
  15. Migliori A., Lastra R. 1978; Study of viruses on Commelina diffusa Burm. in Guadeloupe. Annales de Phytopathologie 10:467–477 [View Article]
    [Google Scholar]
  16. Olszewski N. E., Lockhart B. 2011; Badnavirus. In The Springer Index of Viruses, 2nd edn. pp. 263–268 Edited by Tidona C., Darai G. New York: Springer; [View Article]
    [Google Scholar]
  17. Pooggin M. M., Fütterer J., Skryabin K. G., Hohn T. 1999; A short open reading frame terminating in front of a stable hairpin is the conserved feature in pregenomic RNA leaders of plant pararetroviruses. J Gen Virol 80:2217–2228[PubMed]
    [Google Scholar]
  18. Pooggin M. M., Ryabova L. A., He X., Fütterer J., Hohn T. 2006; Mechanism of ribosome shunting in Rice tungro bacilliform pararetrovirus. RNA 12:841–850 [View Article][PubMed]
    [Google Scholar]
  19. Qiu W., Lunden S. 2007; Characterization of a severe virus-like disease in Chardonnay grapevines in Missouri. Plant Health Prog. Online. doi:10.1094/PHP-2007-1119-01-BR [View Article]
    [Google Scholar]
  20. Qu R., Bhattacharyya M., Laco G. S., De Kochko A., Subba Rao B. L., Kaniewska M. B., Scott Elmer J., Rochester D. E., Smith C. E., Beachy R. N. 1991; Characterization of the genome of rice tungro bacilliform virus: comparison with Commelina yellow mottle virus and caulimoviruses. Virology 185:354–364 [View Article][PubMed]
    [Google Scholar]
  21. Reid K. E., Olsson N., Schlosser J., Peng F., Lund S. T. 2006; An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27–37 [View Article][PubMed]
    [Google Scholar]
  22. Remans T., Grof C. P. L., Ebert P. R., Schenk P. M. 2005; Functional promoter analysis using an approach based on an in vitro evolution strategy. Biotechniques 38:209–216 [View Article][PubMed]
    [Google Scholar]
  23. Sanfaçon H., Brodmann P., Hohn T. 1991; A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Dev 5:141–149 [View Article][PubMed]
    [Google Scholar]
  24. Schenk P. M., Remans T., Sági L., Elliott A. R., Dietzgen R. G., Swennen R., Ebert P. R., Grof C. P., Manners J. M. 2001; Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants. Plant Mol Biol 47:399–412 [View Article][PubMed]
    [Google Scholar]
  25. Xu D., Mock R., Kinard G., Li R. 2011; Molecular analysis of the complete genomic sequences of four isolates of Gooseberry vein banding associated virus. Virus Genes 43:130–137 [View Article][PubMed]
    [Google Scholar]
  26. Zhang Y., Singh K., Kaur R., Qiu W. 2011; Association of a novel DNA virus with the grapevine vein-clearing and vine decline syndrome. Phytopathology 101:1081–1090 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069286-0
Loading
/content/journal/jgv/10.1099/vir.0.069286-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed