1887

Abstract

The antibody response plays a crucial role against hepatitis C virus (HCV) infection, and our understanding of this intricate progress is far from complete. We previously reported a novel and robust technique based on a large combinatorial viral antigen library displayed on the surface of the yeast , allowing comprehensive profiling of polyclonal antibody responses in both qualitative and quantitative terms. Here, we report the generation and application of a combinatorial library of HCV strain JFH1 envelope glycoprotein to profile the antibody response in four HCV chronically infected individuals. By systematic analysis of the location and frequency of antigenic fragments along the JFH1 envelope glycoprotein, we showed that the major binding antibody response was targeted to E2 (80.9–99.8 %), whilst that against E1 was relatively small (0.3–19.0 %). A total of five major antigenic domains (D1–D5) were identified: one was within E1 and an additional four within E2, despite substantial variability among the different individuals. However, serum absorption with the yeast clones containing the antigenic domain D1 resulted in more reduction in neutralizing antibody activity against pseudotyped HCV than those in E2, suggesting that E1 contains additional neutralizing epitopes. Our results have provided additional insights into the HCV-specific antibody response in humans and should assist in a better understanding of protective antibody immunity and in guiding the development of effective vaccines and therapeutics against HCV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.069278-0
2015-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/1/52.html?itemId=/content/journal/jgv/10.1099/vir.0.069278-0&mimeType=html&fmt=ahah

References

  1. Burke K. P., Cox A. L.. ( 2010;). Hepatitis C virus evasion of adaptive immune responses: a model for viral persistence. . Immunol Res 47:, 216–227. [CrossRef][PubMed]
    [Google Scholar]
  2. Di Lorenzo C., Angus A. G. N., Patel A. H.. ( 2011;). Hepatitis C virus evasion mechanisms from neutralizing antibodies. . Viruses 3:, 2280–2300. [CrossRef][PubMed]
    [Google Scholar]
  3. Edwards V. C., Tarr A. W., Urbanowicz R. A., Ball J. K.. ( 2012;). The role of neutralizing antibodies in hepatitis C virus infection. . J Gen Virol 93:, 1–19. [CrossRef][PubMed]
    [Google Scholar]
  4. Farci P., Alter H. J., Wong D. C., Miller R. H., Govindarajan S., Engle R., Shapiro M., Purcell R. H.. ( 1994;). Prevention of hepatitis C virus infection in chimpanzees after antibody-mediated in vitro neutralization. . Proc Natl Acad Sci U S A 91:, 7792–7796. [CrossRef][PubMed]
    [Google Scholar]
  5. Flint M., Maidens C., Loomis-Price L. D., Shotton C., Dubuisson J., Monk P., Higginbottom A., Levy S., McKeating J. A.. ( 1999;). Characterization of hepatitis C virus E2 glycoprotein interaction with a putative cellular receptor, CD81. . J Virol 73:, 6235–6244.[PubMed]
    [Google Scholar]
  6. Garrone P., Fluckiger A. C., Mangeot P. E., Gauthier E., Dupeyrot-Lacas P., Mancip J., Cangialosi A., Du Chéné I., LeGrand R.. & other authors ( 2011;). A prime–boost strategy using virus-like particles pseudotyped for HCV proteins triggers broadly neutralizing antibodies in macaques. . Sci Transl Med 3:, 94ra71. [CrossRef][PubMed]
    [Google Scholar]
  7. Giang E., Dorner M., Prentoe J. C., Dreux M., Evans M. J., Bukh J., Rice C. M., Ploss A., Burton D. R., Law M.. ( 2012;). Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. . Proc Natl Acad Sci U S A 109:, 6205–6210. [CrossRef][PubMed]
    [Google Scholar]
  8. Haberstroh A., Schnober E. K., Zeisel M. B., Carolla P., Barth H., Blum H. E., Cosset F. L., Koutsoudakis G., Bartenschlager R.. & other authors ( 2008;). Neutralizing host responses in hepatitis C virus infection target viral entry at postbinding steps and membrane fusion. . Gastroenterology 135:, 1719–1728, e1. [CrossRef][PubMed]
    [Google Scholar]
  9. Heim M. H.. ( 2013;). Innate immunity and HCV. . J Hepatol 58:, 564–574. [CrossRef][PubMed]
    [Google Scholar]
  10. Hsu M., Zhang J., Flint M., Logvinoff C., Cheng-Mayer C., Rice C. M., McKeating J. A.. ( 2003;). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. . Proc Natl Acad Sci U S A 100:, 7271–7276. [CrossRef][PubMed]
    [Google Scholar]
  11. Johansson D. X., Voisset C., Tarr A. W., Aung M., Ball J. K., Dubuisson J., Persson M. A.. ( 2007;). Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. . Proc Natl Acad Sci U S A 104:, 16269–16274. [CrossRef][PubMed]
    [Google Scholar]
  12. Kachko A., Kochneva G., Sivolobova G., Grazhdantseva A., Lupan T., Zubkova I., Wells F., Merchlinsky M., Williams O.. & other authors ( 2011;). New neutralizing antibody epitopes in hepatitis C virus envelope glycoproteins are revealed by dissecting peptide recognition profiles. . Vaccine 30:, 69–77. [CrossRef][PubMed]
    [Google Scholar]
  13. Kaplan M., Gawrieh S., Cotler S. J., Jensen D. M.. ( 2003;). Neutralizing antibodies in hepatitis C virus infection: a review of immunological and clinical characteristics. . Gastroenterology 125:, 597–604. [CrossRef][PubMed]
    [Google Scholar]
  14. Kong L., Giang E., Nieusma T., Kadam R. U., Cogburn K. E., Hua Y., Dai X., Stanfield R. L., Burton D. R.. & other authors ( 2013;). Hepatitis C virus E2 envelope glycoprotein core structure. . Science 342:, 1090–1094. [CrossRef][PubMed]
    [Google Scholar]
  15. Krey T., d’Alayer J., Kikuti C. M., Saulnier A., Damier-Piolle L., Petitpas I., Johansson D. X., Tawar R. G., Baron B.. & other authors ( 2010;). The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. . PLoS Pathog 6:, e1000762. [CrossRef][PubMed]
    [Google Scholar]
  16. Law M., Maruyama T., Lewis J., Giang E., Tarr A. W., Stamataki Z., Gastaminza P., Chisari F. V., Jones I. M.. & other authors ( 2008;). Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. . Nat Med 14:, 25–27. [CrossRef][PubMed]
    [Google Scholar]
  17. Law J. L., Chen C., Wong J., Hockman D., Santer D. M., Frey S. E., Belshe R. B., Wakita T., Bukh J.. & other authors ( 2013;). A hepatitis C virus (HCV) vaccine comprising envelope glycoproteins gpE1/gpE2 derived from a single isolate elicits broad cross-genotype neutralizing antibodies in humans. . PLoS ONE 8:, e59776. [CrossRef][PubMed]
    [Google Scholar]
  18. Lin Z., Li S., Chen Y.. ( 2009;). Identification of viral peptide fragments for vaccine development. . Methods Mol Biol 515:, 261–274. [CrossRef][PubMed]
    [Google Scholar]
  19. Logvinoff C., Major M. E., Oldach D., Heyward S., Talal A., Balfe P., Feinstone S. M., Alter H., Rice C. M., McKeating J. A.. ( 2004;). Neutralizing antibody response during acute and chronic hepatitis C virus infection. . Proc Natl Acad Sci U S A 101:, 10149–10154. [CrossRef][PubMed]
    [Google Scholar]
  20. Meunier J. C., Russell R. S., Goossens V., Priem S., Walter H., Depla E., Union A., Faulk K. N., Bukh J.. & other authors ( 2008;). Isolation and characterization of broadly neutralizing human monoclonal antibodies to the E1 glycoprotein of hepatitis C virus. . J Virol 82:, 966–973. [CrossRef][PubMed]
    [Google Scholar]
  21. Meunier J. C., Gottwein J. M., Houghton M., Russell R. S., Emerson S. U., Bukh J., Purcell R. H.. ( 2011;). Vaccine-induced cross-genotype reactive neutralizing antibodies against hepatitis C virus. . J Infect Dis 204:, 1186–1190. [CrossRef][PubMed]
    [Google Scholar]
  22. Moradpour D., Penin F., Rice C. M.. ( 2007;). Replication of hepatitis C virus. . Nat Rev Microbiol 5:, 453–463. [CrossRef][PubMed]
    [Google Scholar]
  23. Morin T. J., Broering T. J., Leav B. A., Blair B. M., Rowley K. J., Boucher E. N., Wang Y., Cheslock P. S., Knauber M.. & other authors ( 2012;). Human monoclonal antibody HCV1 effectively prevents and treats HCV infection in chimpanzees. . PLoS Pathog 8:, e1002895. [CrossRef][PubMed]
    [Google Scholar]
  24. Neumann-Haefelin C., Thimme R.. ( 2013;). Adaptive immune responses in hepatitis C virus infection. . Curr Top Microbiol Immunol 369:, 243–262.[PubMed]
    [Google Scholar]
  25. Osburn W. O., Fisher B. E., Dowd K. A., Urban G., Liu L., Ray S. C., Thomas D. L., Cox A. L.. ( 2010;). Spontaneous control of primary hepatitis C virus infection and immunity against persistent reinfection. . Gastroenterology 138:, 315–324. [CrossRef][PubMed]
    [Google Scholar]
  26. Pestka J. M., Zeisel M. B., Bläser E., Schürmann P., Bartosch B., Cosset F. L., Patel A. H., Meisel H., Baumert J.. & other authors ( 2007;). Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C. . Proc Natl Acad Sci U S A 104:, 6025–6030. [CrossRef][PubMed]
    [Google Scholar]
  27. Ploss A., Evans M. J.. ( 2012;). Hepatitis C virus host cell entry. . Curr Opin Virol 2:, 14–19. [CrossRef][PubMed]
    [Google Scholar]
  28. Prince A. M., Brotman B., Lee D. H., Ren L., Moore B. S., Scheffel J. W.. ( 1999;). Significance of the anti-E2 response in self-limited and chronic hepatitis C virus infections in chimpanzees and in humans. . J Infect Dis 180:, 987–991. [CrossRef][PubMed]
    [Google Scholar]
  29. Rehermann B.. ( 2009;). Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. . J Clin Invest 119:, 1745–1754. [CrossRef][PubMed]
    [Google Scholar]
  30. Rice C. M.. ( 2011;). New insights into HCV replication: potential antiviral targets. . Top Antivir Med 19:, 117–120.[PubMed]
    [Google Scholar]
  31. Scheid J. F., Mouquet H., Feldhahn N., Seaman M. S., Velinzon K., Pietzsch J., Ott R. G., Anthony R. M., Zebroski H.. & other authors ( 2009;). Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. . Nature 458:, 636–640. [CrossRef][PubMed]
    [Google Scholar]
  32. Shimizu Y. K., Hijikata M., Iwamoto A., Alter H. J., Purcell R. H., Yoshikura H.. ( 1994;). Neutralizing antibodies against hepatitis C virus and the emergence of neutralization escape mutant viruses. . J Virol 68:, 1494–1500.[PubMed]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  34. Tarr A. W., Urbanowicz R. A., Ball J. K.. ( 2012;). The role of humoral innate immunity in hepatitis C virus infection. . Viruses 4:, 1–27. [CrossRef][PubMed]
    [Google Scholar]
  35. Troesch M., Meunier I., Lapierre P., Lapointe N., Alvarez F., Boucher M., Soudeyns H.. ( 2006;). Study of a novel hypervariable region in hepatitis C virus (HCV) E2 envelope glycoprotein. . Virology 352:, 357–367. [CrossRef][PubMed]
    [Google Scholar]
  36. Wahid A., Dubuisson J.. ( 2013;). Virus-neutralizing antibodies to hepatitis C virus. . J Viral Hepat 20:, 369–376. [CrossRef][PubMed]
    [Google Scholar]
  37. Wakita T., Pietschmann T., Kato T., Date T., Miyamoto M., Zhao Z., Murthy K., Habermann A., Kräusslich H. G.. & other authors ( 2005;). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. . Nat Med 11:, 791–796. [CrossRef][PubMed]
    [Google Scholar]
  38. Wang Y., Keck Z. Y., Foung S. K.. ( 2011;). Neutralizing antibody response to hepatitis C virus. . Viruses 3:, 2127–2145. [CrossRef][PubMed]
    [Google Scholar]
  39. Wilson P. C., Andrews S. F.. ( 2012;). Tools to therapeutically harness the human antibody response. . Nat Rev Immunol 12:, 709–719. [CrossRef][PubMed]
    [Google Scholar]
  40. Wrammert J., Smith K., Miller J., Langley W. A., Kokko K., Larsen C., Zheng N. Y., Mays I., Garman L.. & other authors ( 2008;). Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. . Nature 453:, 667–671. [CrossRef][PubMed]
    [Google Scholar]
  41. Wu X., Yang Z. Y., Li Y., Hogerkorp C. M., Schief W. R., Seaman M. S., Zhou T., Schmidt S. D., Wu L.. & other authors ( 2010;). Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. . Science 329:, 856–861. [CrossRef][PubMed]
    [Google Scholar]
  42. Zuo T., Shi X., Liu Z., Guo L., Zhao Q., Guan T., Pan X., Jia N., Cao W.. & other authors ( 2011;). Comprehensive analysis of pathogen-specific antibody response in vivo based on an antigen library displayed on surface of yeast. . J Biol Chem 286:, 33511–33519. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.069278-0
Loading
/content/journal/jgv/10.1099/vir.0.069278-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error