1887

Abstract

A common critical cellular event that many human enveloped viruses share is the requirement for proteolytic cleavage of the viral glycoprotein by furin in the host secretory pathway. For example, the furin-dependent proteolytic activation of highly pathogenic (HP) influenza A (infA) H5 and H7 haemagglutinin precursor (HA0) subtypes is critical for yielding fusion-competent infectious virions. In this study, we hypothesized that viral hijacking of the furin pathway by HP infA viruses to permit cleavage of HA0 could represent a novel molecular mechanism controlling the dynamic production of fusion-competent infectious virus particles during the viral life cycle. We explored the biological role of a newly identified furin-directed human microRNA, miR-24, in this process as a potential post-transcriptional regulator of the furin-mediated activation of HA0 and production of fusion-competent virions in the host secretory pathway. We report that miR-24 and furin are differentially expressed in human A549 cells infected with HP avian-origin infA H5N1. Using miR-24 mimics, we demonstrated a robust decrease in both furin mRNA levels and intracellular furin activity in A549 cells. Importantly, pretreatment of A549 cells with miR-24 mimicked these results: a robust decrease of H5N1 infectious virions and a complete block of H5N1 virus spread that was not observed in A549 cells infected with low-pathogenicity swine-origin infA H1N1 virus. Our results suggest that viral-specific downregulation of furin-directed microRNAs such as miR-24 during the life cycle of HP infA viruses may represent a novel regulatory mechanism that governs furin-mediated proteolytic activation of HA0 glycoproteins and production of infectious virions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068585-0
2015-01-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/1/30.html?itemId=/content/journal/jgv/10.1099/vir.0.068585-0&mimeType=html&fmt=ahah

References

  1. Ambros V.. ( 2004;). The functions of animal microRNAs. . Nature 431:, 350–355. [CrossRef][PubMed]
    [Google Scholar]
  2. Arsenault D., Lucien F., Dubois C. M.. ( 2012;). Hypoxia enhances cancer cell invasion through relocalization of the proprotein convertase furin from the trans-Golgi network to the cell surface. . J Cell Physiol 227:, 789–800. [CrossRef][PubMed]
    [Google Scholar]
  3. Bang C., Fiedler J., Thum T.. ( 2012;). Cardiovascular importance of the microRNA-23/27/24 family. . Microcirculation 19:, 208–214. [CrossRef][PubMed]
    [Google Scholar]
  4. Bartel D. P.. ( 2004;). MicroRNAs: genomics, biogenesis, mechanism, and function. . Cell 116:, 281–297. [CrossRef][PubMed]
    [Google Scholar]
  5. Basak A., Zhong M., Munzer J. S., Chrétien M., Seidah N. G.. ( 2001;). Implication of the proprotein convertases furin, PC5 and PC7 in the cleavage of surface glycoproteins of Hong Kong, Ebola and respiratory syncytial viruses: a comparative analysis with fluorogenic peptides. . Biochem J 353:, 537–545. [CrossRef][PubMed]
    [Google Scholar]
  6. Bourne G. L., Grainger D. J.. ( 2011;). Development and characterisation of an assay for furin activity. . J Immunol Methods 364:, 101–108. [CrossRef][PubMed]
    [Google Scholar]
  7. Brunner S., Herndler-Brandstetter D., Arnold C. R., Wiegers G. J., Villunger A., Hackl M., Grillari J., Moreno-Villanueva M., Bürkle A., Grubeck-Loebenstein B.. ( 2012;). Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. . Aging Cell 11:, 579–587. [CrossRef][PubMed]
    [Google Scholar]
  8. Chhabra R., Dubey R., Saini N.. ( 2010;). Cooperative and individualistic functions of the microRNAs in the miR-23a~27a~24-2 cluster and its implication in human diseases. . Mol Cancer 9:, 232. [CrossRef][PubMed]
    [Google Scholar]
  9. Colman P. M., Lawrence M. C.. ( 2003;). The structural biology of type I viral membrane fusion. . Nat Rev Mol Cell Biol 4:, 309–319. [CrossRef][PubMed]
    [Google Scholar]
  10. Dogar A. M., Towbin H., Hall J.. ( 2011;). Suppression of latent transforming growth factor (TGF)-beta1 restores growth inhibitory TGF-beta signaling through microRNAs. . J Biol Chem 286:, 16447–16458. [CrossRef][PubMed]
    [Google Scholar]
  11. Fiedler J., Jazbutyte V., Kirchmaier B. C., Gupta S. K., Lorenzen J., Hartmann D., Galuppo P., Kneitz S., Pena J. T.. & other authors ( 2011;). MicroRNA-24 regulates vascularity after myocardial infarction. . Circulation 124:, 720–730. [CrossRef][PubMed]
    [Google Scholar]
  12. Foucault M. L., Moules V., Rosa-Calatrava M., Riteau B.. ( 2011;). Role for proteases and HLA-G in the pathogenicity of influenza A viruses. . J Clin Virol 51:, 155–159. [CrossRef][PubMed]
    [Google Scholar]
  13. Geiss G. K., Salvatore M., Tumpey T. M., Carter V. S., Wang X., Basler C. F., Taubenberger J. K., Bumgarner R. E., Palese P.. & other authors ( 2002;). Cellular transcriptional profiling in influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza. . Proc Natl Acad Sci U S A 99:, 10736–10741. [CrossRef][PubMed]
    [Google Scholar]
  14. Gottwein E., Cullen B. R.. ( 2008;). Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. . Cell Host Microbe 3:, 375–387. [CrossRef][PubMed]
    [Google Scholar]
  15. Guo Y., Fu W., Chen H., Shang C., Zhong M.. ( 2012;). miR-24 functions as a tumor suppressor in Hep2 laryngeal carcinoma cells partly through down-regulation of the S100A8 protein. . Oncol Rep 27:, 1097–1103.[PubMed]
    [Google Scholar]
  16. Hatziapostolou M., Polytarchou C., Aggelidou E., Drakaki A., Poultsides G. A., Jaeger S. A., Ogata H., Karin M., Struhl K.. & other authors ( 2011;). An HNF4α-miRNA inflammatory feedback circuit regulates hepatocellular oncogenesis. . Cell 147:, 1233–1247. [CrossRef][PubMed]
    [Google Scholar]
  17. Henke J. I., Goergen D., Zheng J., Song Y., Schüttler C. G., Fehr C., Jünemann C., Niepmann M.. ( 2008;). microRNA-122 stimulates translation of hepatitis C virus RNA. . EMBO J 27:, 3300–3310. [CrossRef][PubMed]
    [Google Scholar]
  18. Ho B. C., Yu S. L., Chen J. J., Chang S. Y., Yan B. S., Hong Q. S., Singh S., Kao C. L., Chen H. Y.. & other authors ( 2011;). Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. . Cell Host Microbe 9:, 58–69. [CrossRef][PubMed]
    [Google Scholar]
  19. Horimoto T., Nakayama K., Smeekens S. P., Kawaoka Y.. ( 1994;). Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. . J Virol 68:, 6074–6078.[PubMed]
    [Google Scholar]
  20. Huang J., Wang F., Argyris E., Chen K., Liang Z., Tian H., Huang W., Squires K., Verlinghieri G., Zhang H.. ( 2007;). Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. . Nat Med 13:, 1241–1247. [CrossRef][PubMed]
    [Google Scholar]
  21. Huang Z., Chen X., Yu B., Chen D.. ( 2012;). Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24. . Dev Comp Immunol 37:, 414–420. [CrossRef][PubMed]
    [Google Scholar]
  22. Jangra R. K., Yi M., Lemon S. M.. ( 2010;). Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. . J Virol 84:, 6615–6625. [CrossRef][PubMed]
    [Google Scholar]
  23. Jean F., Boudreault A., Basak A., Seidah N. G., Lazure C.. ( 1995;). Fluorescent peptidyl substrates as an aid in studying the substrate specificity of human prohormone convertase PC1 and human furin and designing a potent irreversible inhibitor. . J Biol Chem 270:, 19225–19231. [CrossRef][PubMed]
    [Google Scholar]
  24. Jean F., Stella K., Thomas L., Liu G., Xiang Y., Reason A. J., Thomas G.. ( 1998;). α1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. . Proc Natl Acad Sci U S A 95:, 7293–7298. [CrossRef][PubMed]
    [Google Scholar]
  25. Jopling C. L., Yi M., Lancaster A. M., Lemon S. M., Sarnow P.. ( 2005;). Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. . Science 309:, 1577–1581. [CrossRef][PubMed]
    [Google Scholar]
  26. Jopling C. L., Schütz S., Sarnow P.. ( 2008;). Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. . Cell Host Microbe 4:, 77–85. [CrossRef][PubMed]
    [Google Scholar]
  27. Kawaoka Y., Webster R. G.. ( 1988;). Sequence requirements for cleavage activation of influenza virus hemagglutinin expressed in mammalian cells. . Proc Natl Acad Sci U S A 85:, 324–328. [CrossRef][PubMed]
    [Google Scholar]
  28. Kido H., Okumura Y., Takahashi E., Pan H. Y., Wang S., Yao D., Yao M., Chida J., Yano M.. ( 2012;). Role of host cellular proteases in the pathogenesis of influenza and influenza-induced multiple organ failure. . Biochim Biophys Acta 1824:, 186–194. [CrossRef][PubMed]
    [Google Scholar]
  29. Lal A., Kim H. H., Abdelmohsen K., Kuwano Y., Pullmann R. Jr, Srikantan S., Subrahmanyam R., Martindale J. L., Yang X.. & other authors ( 2008;). p16(INK4a) translation suppressed by miR-24. . PLoS ONE 3:, e1864. [CrossRef][PubMed]
    [Google Scholar]
  30. Lal A., Navarro F., Maher C. A., Maliszewski L. E., Yan N., O’Day E., Chowdhury D., Dykxhoorn D. M., Tsai P.. & other authors ( 2009;). miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3’UTR microRNA recognition elements. . Mol Cell 35:, 610–625. [CrossRef][PubMed]
    [Google Scholar]
  31. Li Y., Chan E. Y., Li J., Ni C., Peng X., Rosenzweig E., Tumpey T. M., Katze M. G.. ( 2010;). MicroRNA expression and virulence in pandemic influenza virus-infected mice. . J Virol 84:, 3023–3032. [CrossRef][PubMed]
    [Google Scholar]
  32. Loveday E. K., Svinti V., Diederich S., Pasick J., Jean F.. ( 2012;). Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection. . J Virol 86:, 6109–6122. [CrossRef][PubMed]
    [Google Scholar]
  33. Luna C., Li G., Qiu J., Epstein D. L., Gonzalez P.. ( 2011;). MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. . J Cell Physiol 226:, 1407–1414. [CrossRef][PubMed]
    [Google Scholar]
  34. Ng E. K., Cheng P. K., Ng A. Y., Hoang T. L., Lim W. W.. ( 2005;). Influenza A H5N1 detection. . Emerg Infect Dis 11:, 1303–1305. [CrossRef][PubMed]
    [Google Scholar]
  35. Oda Y., Nakajima M., Mohri T., Takamiya M., Aoki Y., Fukami T., Yokoi T.. ( 2012;). Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24. . Toxicol Appl Pharmacol 260:, 222–231. [CrossRef][PubMed]
    [Google Scholar]
  36. Richer M. J., Keays C. A., Waterhouse J., Minhas J., Hashimoto C., Jean F.. ( 2004;). The Spn4 gene of Drosophila encodes a potent furin-directed secretory pathway serpin. . Proc Natl Acad Sci U S A 101:, 10560–10565. [CrossRef][PubMed]
    [Google Scholar]
  37. Seidah N. G.. ( 2011;). The proprotein convertases, 20 years later. . Methods Mol Biol 768:, 23–57. [CrossRef][PubMed]
    [Google Scholar]
  38. Skehel J. J., Wiley D. C.. ( 2000;). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. . Annu Rev Biochem 69:, 531–569. [CrossRef][PubMed]
    [Google Scholar]
  39. Spackman E., Senne D. A., Myers T. J., Bulaga L. L., Garber L. P., Perdue M. L., Lohman K., Daum L. T., Suarez D. L.. ( 2002;). Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. . J Clin Microbiol 40:, 3256–3260. [CrossRef][PubMed]
    [Google Scholar]
  40. Srivastava N., Manvati S., Srivastava A., Pal R., Kalaiarasan P., Chattopadhyay S., Gochhait S., Dua R., Bamezai R. N.. ( 2011;). miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention. . Breast Cancer Res 13:, R39. [CrossRef][PubMed]
    [Google Scholar]
  41. Stieneke-Gröber A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H.-D., Garten W.. ( 1992;). Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. . EMBO J 11:, 2407–2414.[PubMed]
    [Google Scholar]
  42. To K. H., Pajovic S., Gallie B. L., Thériault B. L.. ( 2012;). Regulation of p14ARF expression by miR-24: a potential mechanism compromising the p53 response during retinoblastoma development. . BMC Cancer 12:, 69. [CrossRef][PubMed]
    [Google Scholar]
  43. Walker J. A., Molloy S. S., Thomas G., Sakaguchi T., Yoshida T., Chambers T. M., Kawaoka Y.. ( 1994;). Sequence specificity of furin, a proprotein-processing endoprotease, for the hemagglutinin of a virulent avian influenza virus. . J Virol 68:, 1213–1218.[PubMed]
    [Google Scholar]
  44. Wang X., Li M., Zheng H., Muster T., Palese P., Beg A. A., García-Sastre A.. ( 2000;). Influenza A virus NS1 protein prevents activation of NF-kappaB and induction of alpha/beta interferon. . J Virol 74:, 11566–11573. [CrossRef][PubMed]
    [Google Scholar]
  45. Weingartl H. M., Berhane Y., Hisanaga T., Neufeld J., Kehler H., Emburry-Hyatt C., Hooper-McGreevy K., Kasloff S., Dalman B.. & other authors ( 2010;). Genetic and pathobiologic characterization of pandemic H1N1 2009 influenza viruses from a naturally infected swine herd. . J Virol 84:, 2245–2256. [CrossRef][PubMed]
    [Google Scholar]
  46. Xu W., Chen M., Ge N., Xu J.. ( 2012;). Hemagglutinin from the H5N1 virus activates Janus kinase 3 to dysregulate innate immunity. . PLoS ONE 7:, e31721. [CrossRef][PubMed]
    [Google Scholar]
  47. Zhou R., Hu G., Gong A. Y., Chen X. M.. ( 2010;). Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. . Nucleic Acids Res 38:, 3222–3232. [CrossRef][PubMed]
    [Google Scholar]
  48. Zimmerman A. L., Wu S.. ( 2011;). MicroRNAs, cancer and cancer stem cells. . Cancer Lett 300:, 10–19. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068585-0
Loading
/content/journal/jgv/10.1099/vir.0.068585-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error