1887

Abstract

Classical swine fever virus (CSFV) has a tropism for vascular endothelial cells and immune system cells. The process and release of pro-inflammatory cytokines, including IL-1β and IL-18, is one of the fundamental reactions of the innate immune response to viral infection. In this study, we investigated the production of IL-1β from macrophages following CSFV infection. Our results showed that IL-1β was upregulated after CSFV infection through activating caspase-1. Subsequent studies demonstrated that reactive oxygen species may not be involved in CSFV-mediated IL-1β release. Recently, research has indicated a novel mechanism by which inflammasomes are triggered through detection of activity of viroporin. We further demonstrated that CSFV viroporin p7 protein induced IL-1β secretion which could be inhibited by the ion channel blocker amantadine and also discovered that p7 protein was a short-lived protein degraded by the proteasome. Together, our observations provided an insight into the mechanism of CSFV-induced inflammatory responses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068502-0
2014-12-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2693.html?itemId=/content/journal/jgv/10.1099/vir.0.068502-0&mimeType=html&fmt=ahah

References

  1. Allen I. C., Scull M. A., Moore C. B., Holl E. K., McElvania-TeKippe E., Taxman D. J., Guthrie E. H., Pickles R. J., Ting J. P.-Y. 2009; The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565 [CrossRef][PubMed]
    [Google Scholar]
  2. Becher P., Avalos Ramirez R., Orlich M., Cedillo Rosales S., König M., Schweizer M., Stalder H., Schirrmeier H., Thiel H. J. 2003; Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311:96–104 [CrossRef][PubMed]
    [Google Scholar]
  3. Bentham M. J., Foster T. L., McCormick C., Griffin S. 2013; Mutations in hepatitis C virus p7 reduce both the egress and infectivity of assembled particles via impaired proton channel function. J Gen Virol 94:2236–2248 [CrossRef][PubMed]
    [Google Scholar]
  4. Borca M. V., Gudmundsdottir I., Fernández-Sainz I. J., Holinka L. G., Risatti G. R. 2008; Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia. Virus Res 138:89–96 [CrossRef][PubMed]
    [Google Scholar]
  5. Brohm C., Steinmann E., Friesland M., Lorenz I. C., Patel A., Penin F., Bartenschlager R., Pietschmann T. 2009; Characterization of determinants important for hepatitis C virus p7 function in morphogenesis by using trans-complementation. J Virol 83:11682–11693 [CrossRef][PubMed]
    [Google Scholar]
  6. Ciechanover A. 1998; The ubiquitin–proteasome pathway: on protein death and cell life. EMBO J 17:7151–7160 [CrossRef][PubMed]
    [Google Scholar]
  7. Dong X.-Y., Liu W.-J., Zhao M.-Q., Wang J.-Y., Pei J.-J., Luo Y.-W., Ju C.-M., Chen J.-D. 2013; Classical swine fever virus triggers RIG-I and MDA5-dependent signaling pathway to IRF-3 and NF-κB activation to promote secretion of interferon and inflammatory cytokines in porcine alveolar macrophages. Virol J 10:286 [CrossRef][PubMed]
    [Google Scholar]
  8. Dreier S., Zimmermann B., Moennig V., Greiser-Wilke I. 2007; A sequence database allowing automated genotyping of Classical swine fever virus isolates. J Virol Methods 140:95–99 [CrossRef][PubMed]
    [Google Scholar]
  9. Franck N., Le Seyec J., Guguen-Guillouzo C., Erdtmann L. 2005; Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J Virol 79:2700–2708 [CrossRef][PubMed]
    [Google Scholar]
  10. Gladue D. P., Zhu J., Holinka L. G., Fernandez-Sainz I., Carrillo C., Prarat M. V., O’Donnell V., Borca M. V. 2010; Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray. Virus Res 151:10–18 [CrossRef][PubMed]
    [Google Scholar]
  11. Gladue D. P., Holinka L. G., Largo E., Fernandez Sainz I., Carrillo C., O’Donnell V., Baker-Branstetter R., Lu Z., Ambroggio X.other authors 2012; Classical swine fever virus p7 protein is a viroporin involved in virulence in swine. J Virol 86:6778–6791 [CrossRef][PubMed]
    [Google Scholar]
  12. Glickman M. H., Ciechanover A. 2002; The ubiquitin–proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428[PubMed]
    [Google Scholar]
  13. Guo H. C., Sun S. Q., Sun D. H., Wei Y. Q., Xu J., Huang M., Liu X. T., Liu Z. X., Luo J. X.other authors 2013a; Viroporin activity and membrane topology of classic swine fever virus p7 protein. Int J Biochem Cell Biol 45:1186–1194 [CrossRef][PubMed]
    [Google Scholar]
  14. Guo K.-K., Tang Q.-H., Ning P.-B., Li H.-L., Liu W., Lv Q.-Z., Liang W.-L., Lin Z., Zhang C.-C.other authors 2013b; Pilot study on degradation of classical swine fever virus nonstructural 2 protein in cells. J Anim Vet Adv 12:234–241
    [Google Scholar]
  15. Haqshenas G. 2013; The p7 protein of hepatitis C virus is degraded via the proteasome-dependent pathway. Virus Res 176:211–215 [CrossRef][PubMed]
    [Google Scholar]
  16. Harada T., Tautz N., Thiel H. J. 2000; E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J Virol 74:9498–9506 [CrossRef][PubMed]
    [Google Scholar]
  17. He L., Zhang Y. M., Lin Z., Li W. W., Wang J., Li H.-L. 2012; Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells. Virus Genes 45:274–282 [CrossRef][PubMed]
    [Google Scholar]
  18. Horng T. 2014; Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol 35:253–261 [CrossRef][PubMed]
    [Google Scholar]
  19. Hüsser L., Alves M. P., Ruggli N., Summerfield A. 2011; Identification of the role of RIG-I, MDA-5 and TLR3 in sensing RNA viruses in porcine epithelial cells using lentivirus-driven RNA interference. Virus Res 159:9–16 [CrossRef][PubMed]
    [Google Scholar]
  20. Ichinohe T., Pang I. K., Iwasaki A. 2010; Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404–410 [CrossRef][PubMed]
    [Google Scholar]
  21. Ito M., Yanagi Y., Ichinohe T. 2012; Encephalomyocarditis virus viroporin 2B activates NLRP3 inflammasome. PLoS Pathog 8:e1002857 [CrossRef][PubMed]
    [Google Scholar]
  22. Kanneganti T.-D. 2010; Central roles of NLRs and inflammasomes in viral infection. Nat Rev Immunol 10:688–698 [CrossRef][PubMed]
    [Google Scholar]
  23. Kanneganti T. D., Body-Malapel M., Amer A., Park J. H., Whitfield J., Franchi L., Taraporewala Z. F., Miller D., Patton J. T.other authors 2006; Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568 [CrossRef][PubMed]
    [Google Scholar]
  24. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T.other authors 2006; Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105 [CrossRef][PubMed]
    [Google Scholar]
  25. Kaushik D. K., Gupta M., Kumawat K. L., Basu A. 2012; NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS ONE 7:e32270 [CrossRef][PubMed]
    [Google Scholar]
  26. Knoetig S. M., Summerfield A., Spagnuolo-Weaver M., McCullough K. C. 1999; Immunopathogenesis of classical swine fever: role of monocytic cells. Immunology 97:359–366 [CrossRef][PubMed]
    [Google Scholar]
  27. Lamp B., Riedel C., Roman-Sosa G., Heimann M., Jacobi S., Becher P., Thiel H.-J., Rümenapf T. 2011; Biosynthesis of classical swine fever virus nonstructural proteins. J Virol 85:3607–3620 [CrossRef][PubMed]
    [Google Scholar]
  28. Largo E., Gladue D. P., Huarte N., Borca M. V., Nieva J. L. 2014; Pore-forming activity of pestivirus p7 in a minimal model system supports genus-specific viroporin function. Antiviral Res 101:30–36 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee G.-S., Subramanian N., Kim A. I., Aksentijevich I., Goldbach-Mansky R., Sacks D. B., Germain R. N., Kastner D. L., Chae J. J. 2012; The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127 [CrossRef][PubMed]
    [Google Scholar]
  30. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ method. Methods 25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  31. Loo Y.-M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M. A., García-Sastre A.other authors 2008; Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335–345 [CrossRef][PubMed]
    [Google Scholar]
  32. Murakami T., Ockinger J., Yu J., Byles V., McColl A., Hofer A. M., Horng T. 2012; Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109:11282–11287 [CrossRef][PubMed]
    [Google Scholar]
  33. Negash A. A., Ramos H. J., Crochet N., Lau D. T., Doehle B., Papic N., Delker D. A., Jo J., Bertoletti A.other authors 2013; IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog 9:e1003330 [CrossRef][PubMed]
    [Google Scholar]
  34. Piccioli P., Rubartelli A. 2013; The secretion of IL-1β and options for release. Semin Immunol 25:425–429 [CrossRef][PubMed]
    [Google Scholar]
  35. Poeck H., Bscheider M., Gross O., Finger K., Roth S., Rebsamen M., Hannesschläger N., Schlee M., Rothenfusser S.other authors 2010; Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69 [CrossRef][PubMed]
    [Google Scholar]
  36. Ramos H. J., Lanteri M. C., Blahnik G., Negash A., Suthar M. S., Brassil M. M., Sodhi K., Treuting P. M., Busch M. P.other authors 2012; IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog 8:e1003039 [CrossRef][PubMed]
    [Google Scholar]
  37. Schroder K., Tschopp J. 2010; The inflammasomes. Cell 140:821–832 [CrossRef][PubMed]
    [Google Scholar]
  38. Shrivastava S., Mukherjee A., Ray R., Ray R. B. 2013; Hepatitis C virus induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages. J Virol 87:12284–12290 [CrossRef][PubMed]
    [Google Scholar]
  39. Takeuchi O., Akira S. 2008; MDA5/RIG-I and virus recognition. Curr Opin Immunol 20:17–22 [CrossRef][PubMed]
    [Google Scholar]
  40. Thiel H. J., Stark R., Weiland E., Rümenapf T., Meyers G. 1991; Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65:4705–4712[PubMed]
    [Google Scholar]
  41. van de Veerdonk F. L., Netea M. G., Dinarello C. A., Joosten L. A. 2011; Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol 32:110–116 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang K. 2013; Viroporin activates inflammasome. J. Appl. Virol. 2:1–5
    [Google Scholar]
  43. Weingartl H. M., Sabara M., Pasick J., van Moorlehem E., Babiuk L. 2002; Continuous porcine cell lines developed from alveolar macrophages: partial characterization and virus susceptibility. J Virol Methods 104:203–216 [CrossRef][PubMed]
    [Google Scholar]
  44. Zaffuto K. M., Piccone M. E., Burrage T. G., Balinsky C. A., Risatti G. R., Borca M. V., Holinka L. G., Rock D. L., Afonso C. L. 2007; Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol 88:3007–3012 [CrossRef][PubMed]
    [Google Scholar]
  45. Zhang K., Hou Q., Zhong Z., Li X., Chen H., Li W., Wen J., Wang L., Liu W., Zhong F. 2013; Porcine reproductive and respiratory syndrome virus activates inflammasomes of porcine alveolar macrophages via its small envelope protein E. Virology 442:156–162 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068502-0
Loading
/content/journal/jgv/10.1099/vir.0.068502-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error