Genome analysis of phage vB_CsaP_Ss1 reveals an endolysin with potential for biocontrol of Gram-negative bacterial pathogens Free

Abstract

Bacteriophages and their derivatives are continuously gaining impetus as viable alternative therapeutic agents to control harmful multidrug-resistant bacterial pathogens, particularly in the food industry. The reduced efficacy of conventional antibiotics has resulted in a quest to find novel alternatives in the war against infectious disease. This study describes the full-genome sequence of phage vB_CsaP_Ss1, with subsequent cloning and expression of its endolysin, capable of hydrolysing Gram-negative peptidoglycan. phage vB_CsaP_Ss1 is composed of 42 205 bp of dsDNA with a G+C content of 46.1 mol%. A total of 57 ORFs were identified of which 18 could be assigned a putative function based on similarity to characterized proteins. The genome of phage vB_CsaP_Ss1 showed little similarity to any other bacteriophage genomes available in the database and thus was considered unique. In addition, functional analysis of the predicted endolysin (LysSs1) was also investigated. Zymographic experiments demonstrated the hydrolytic activity of LysSs1 against Gram-negative peptidoglycan, and this endolysin thus represents a novel candidate with potential for use against Gram-negative pathogens.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.068494-0
2015-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/2/463.html?itemId=/content/journal/jgv/10.1099/vir.0.068494-0&mimeType=html&fmt=ahah

References

  1. Al-Holy M. A., Lin M., Al-Qadiri H. M., Rasco B. A. 2008; A comparative study between overlay methods and selective-differential media for recovery of stressed Enterobacter sakazakii from infant formula. J Food Microbiol 25:22–28 [View Article]
    [Google Scholar]
  2. Anany H., Chen W., Pelton R., Griffiths M. W. 2011; Biocontrol of Listeria monocytogenes and Escherichia coli O157 : H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol 77:6379–6387 [View Article][PubMed]
    [Google Scholar]
  3. Aravind L., Koonin E. V. 1998; Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752 [View Article][PubMed]
    [Google Scholar]
  4. Bar-Oz B., Preminger A., Peleg O., Block C., Arad I. 2001; Enterobacter sakazakii infection in the newborn. Acta Paediatr 90:356–358 [View Article][PubMed]
    [Google Scholar]
  5. Bardina C., Spricigo D. A., Cortés P., Llagostera M. 2012; Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl Environ Microbiol 78:6600–6607 [View Article][PubMed]
    [Google Scholar]
  6. Barrett A. J., Woessner J. F., Rawlings N. D. 2004; Chapter 68, Catalytic mechanisms for metallopeptidases. pp. 268–287 In Handbook of Proteolytic Enzymes vol. 1 Amsterdam: Elsevier;
    [Google Scholar]
  7. Barron J. C., Forsythe S. J. 2007; Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J Food Prot 70:2111–2117 [View Article][PubMed]
    [Google Scholar]
  8. Berchieri A. Jr, Lovell M. A., Barrow P. A. 1991; The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium . Res Microbiol 142:541–549 [View Article][PubMed]
    [Google Scholar]
  9. Bigot B., Lee W. J., McIntyre L., Wilson T., Hudson J. A., Billington C., Heinemann J. A. 2011; Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol 28:1448–1452 [View Article][PubMed]
    [Google Scholar]
  10. Black L. W. 1989; DNA packaging in dsDNA bacteriophages. Annu Rev Microbiol 43:267–292 [View Article][PubMed]
    [Google Scholar]
  11. Borie C., Albala I., Sánchez P., Sánchez M. L., Ramírez S., Navarro C., Morales M. A., Retamales A. J., Robeson J. 2008; Bacteriophage treatment reduces Salmonella colonization of infected chickens. Avian Dis 52:64–67 [View Article][PubMed]
    [Google Scholar]
  12. Botsaris G., Liapi M., Kakogiannis C., Dodd C. E., Rees C. E. 2013; Detection of Mycobacterium avium subsp. paratuberculosis in bulk tank milk by combined phage-PCR assay: evidence that plaque number is a good predictor of MAP. Int J Food Microbiol 164:76–80 [View Article][PubMed]
    [Google Scholar]
  13. Botstein D. 1980; A theory of modular evolution for bacteriophages. Ann N Y Acad Sci 354:484–491 [View Article][PubMed]
    [Google Scholar]
  14. Briers Y., Volckaert G., Cornelissen A., Lagaert S., Michiels C. W., Hertveldt K., Lavigne R. 2007; Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages ϕKZ and EL. Mol Microbiol 65:1334–1344 [View Article][PubMed]
    [Google Scholar]
  15. Briers Y., Walmagh M., Lavigne R. 2011; Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa . J Appl Microbiol 110:778–785 [View Article][PubMed]
    [Google Scholar]
  16. Briers Y., Walmagh M., Van Puyenbroeck V., Cornelissen A., Cenens W., Aertsen A., Oliveira H., Azeredo J., Verween G. other authors 2014; Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. MBio 5:e01379-14. [View Article][PubMed]
    [Google Scholar]
  17. Brüssow H., Desiere F. 2001; Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol Microbiol 39:213–223 [View Article][PubMed]
    [Google Scholar]
  18. Brüssow H., Canchaya C., Hardt W. D. 2004; Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602 [View Article][PubMed]
    [Google Scholar]
  19. Bullman S., Lucid A., Corcoran D., Sleator R. D., Lucey B. 2013; Genomic investigation into strain heterogeneity and pathogenic potential of the emerging gastrointestinal pathogen Campylobacter ureolyticus . PLoS One 8:e71515 [View Article][PubMed]
    [Google Scholar]
  20. Carver T., Berriman M., Tivey A., Patel C., Böhme U., Barrell B. G., Parkhill J., Rajandream M. A. 2008; Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676 [View Article][PubMed]
    [Google Scholar]
  21. Casjens S., Hendrix R. 1998; Control mechanisms in dsDNA bacteriophage assembly. pp. 15–75 In The Bacteriophages Vol. 1 Edited by Calendar R. L. New York: Plenum;
    [Google Scholar]
  22. Chang C. H., Chiang M. L., Chou C. C. 2010; The effect of heat shock on the response of Cronobacter sakazakii to subsequent lethal stresses. Foodborne Pathog Dis 7:71–76 [View Article][PubMed]
    [Google Scholar]
  23. Chikova A. K., Schaaper R. M. 2005; The bacteriophage P1 hot gene product can substitute for the Escherichia coli DNA polymerase III θ subunit. J Bacteriol 187:5528–5536 [View Article][PubMed]
    [Google Scholar]
  24. Coffey B., Rivas L., Duffy G., Coffey A., Ross R. P., McAuliffe O. 2011; Assessment of Escherichia coli O157 : H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. Int J Food Microbiol 147:188–194 [View Article][PubMed]
    [Google Scholar]
  25. Darzentas N. 2010; Circoletto: visualizing sequence similarity with Circos. Bioinformatics 26:2620–2621 [View Article][PubMed]
    [Google Scholar]
  26. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. 1999; Improved microbial gene identification with glimmer . Nucleic Acids Res 27:4636–4641 [View Article][PubMed]
    [Google Scholar]
  27. DeRose E. F., Li D., Darden T., Harvey S., Perrino F. W., Schaaper R. M., London R. E. 2002; Model for the catalytic domain of the proofreading epsilon subunit of Escherichia coli DNA polymerase III based on NMR structural data. Biochemistry 41:94–110 [View Article][PubMed]
    [Google Scholar]
  28. Desiere F., Mahanivong C., Hillier A. J., Chandry P. S., Davidson B. E., Brüssow H. 2001; Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Virology 283:240–252 [View Article][PubMed]
    [Google Scholar]
  29. Doehn J. M., Fischer K., Reppe K., Gutbier B., Tschernig T., Hocke A. C., Fischetti V. A., Löffler J., Suttorp N. other authors 2013; Delivery of the endolysin Cpl-1 by inhalation rescues mice with fatal pneumococcal pneumonia. J Antimicrob Chemother 68:2111–2117 [View Article][PubMed]
    [Google Scholar]
  30. Donovan D. M., Lardeo M., Foster-Frey J. 2006; Lysis of staphylococcal mastitis pathogens by bacteriophage ϕ11 endolysin. FEMS Microbiol Lett 265:133–139 [View Article][PubMed]
    [Google Scholar]
  31. Dube P., Tavares P., Lurz R., van Heel M. 1993; The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J 12:1303–1309[PubMed]
    [Google Scholar]
  32. El-Arabi T. F., Griffiths M. W., She Y. M., Villegas A., Lingohr E. J., Kropinski A. M. 2013; Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virol J 10:48 [View Article][PubMed]
    [Google Scholar]
  33. El-Shibiny A., Scott A., Timms A., Metawea Y., Connerton P., Connerton I. 2009; Application of a group II Campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J Food Prot 72:733–740[PubMed]
    [Google Scholar]
  34. Endersen L., O’Mahony J., Hill C., Ross R. P., McAuliffe O., Coffey A. 2014; Phage therapy in the food industry. Annu Rev Food Sci Technol 5:327–349 [View Article][PubMed]
    [Google Scholar]
  35. Farmer J. J. III, Asbury M. A., Hickman F. W., Brenner D. J. 1980; The enterobacteriaceae study group. Enterobacter sakazakii: a new species of ‘Enterobacteriaceae’ isolated from clinical specimens. Int J Syst Bacteriol 30:569–584 [View Article]
    [Google Scholar]
  36. Faruque S. M., Mekalanos J. J. 2012; Phage–bacterial interactions in the evolution of toxigenic Vibrio cholerae . Virulence 3:556–565 [View Article][PubMed]
    [Google Scholar]
  37. Fenton M., Keary R., McAuliffe O., Ross R. P., O’Mahony J., Coffey A. 2013; Bacteriophage-derived peptidase CHAPK eliminates and prevents staphylococcal biofilms. Int J Microbiol 2013:625341 [View Article][PubMed]
    [Google Scholar]
  38. Fischetti V. A. 2010; Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362 [View Article][PubMed]
    [Google Scholar]
  39. Frick D. N., Richardson C. C. 2001; DNA primases. Annu Rev Biochem 70:39–80 [View Article][PubMed]
    [Google Scholar]
  40. Gaeng S., Scherer S., Neve H., Loessner M. J. 2000; Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis . Appl Environ Microbiol 66:2951–2958 [View Article][PubMed]
    [Google Scholar]
  41. Goodridge L. D., Bisha B. 2011; Phage-based biocontrol strategies to reduce foodborne pathogens in foods. Bacteriophage 1:130–137 [View Article][PubMed]
    [Google Scholar]
  42. Gorbalenya A. E. 1994; Self-splicing group I and group II introns encode homologous (putative) DNA endonucleases of a new family. Protein Sci 3:1117–1120 [View Article][PubMed]
    [Google Scholar]
  43. Gordon D. 2003; Viewing and editing assembled sequences using Consed. In Current Protocols in Bioinformatics, Chapter 11, Unit 11.2 New York NY: Wiley; [View Article][PubMed]
    [Google Scholar]
  44. Guasch A., Pous J., Ibarra B., Gomis-Rüth F. X., Valpuesta J. M., Sousa N., Carrascosa J. L., Coll M. 2002; Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage ϕ29 connector particle. J Mol Biol 315:663–676 [View Article][PubMed]
    [Google Scholar]
  45. Guenther S., Huwyler D., Richard S., Loessner M. J. 2009; Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl Environ Microbiol 75:93–100 [View Article][PubMed]
    [Google Scholar]
  46. Hendrix R. W., Smith M. C., Burns R. N., Ford M. E., Hatfull G. F. 1999; Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc Natl Acad Sci U S A 96:2192–2197 [View Article][PubMed]
    [Google Scholar]
  47. Hobbs L. J., Nossal N. G. 1996; Either bacteriophage T4 RNase H or Escherichia coli DNA polymerase I is essential for phage replication. J Bacteriol 178:6772–6777[PubMed]
    [Google Scholar]
  48. Horgan M., O’Flynn G., Garry J., Cooney J., Coffey A., Fitzgerald G. F., Ross R. P., McAuliffe O. 2009; Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol 75:872–874 [View Article][PubMed]
    [Google Scholar]
  49. Hunter C. J., Petrosyan M., Ford H. R., Prasadarao N. V. 2008; Enterobacter sakazakii: an emerging pathogen in infants and neonates. Surg Infect (Larchmt) 9:533–539 [View Article][PubMed]
    [Google Scholar]
  50. Hyatt D., Chen G. L., Locascio P. F., Land M. L., Larimer F. W., Hauser L. J. 2010; Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119 [View Article][PubMed]
    [Google Scholar]
  51. Kandhai M. C., Reij M. W., Gorris L. G. M., Guillaume-Gentil O., van Schothorst M. 2004; Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:39–40 [View Article][PubMed]
    [Google Scholar]
  52. Kelly D., O’Sullivan O., Mills S., McAuliffe O., Ross R. P., Neve H., Coffey A. 2012; Genome sequence of the phage c1P1, which infects the beer spoilage bacterium Pediococcus damnosus . Gene 502:53–63 [View Article][PubMed]
    [Google Scholar]
  53. Kim K. P., Klumpp J., Loessner M. J. 2007; Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol 115:195–203 [View Article][PubMed]
    [Google Scholar]
  54. King A. M. Q., Adams M. J., Lefkowitz E. J., Carstens E. B. editors 2012; Part II The double stranded DNA viruses. pp. 63–85 In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses vol. 9 San Diego: Elsevier;
    [Google Scholar]
  55. Korndörfer I. P., Kanitz A., Danzer J., Zimmer M., Loessner M. J., Skerra A. 2008; Structural analysis of the l-alanoyl-d-gutamate endopeptidase domain of Listeria bacteriophages endolysin Ply500 reveals a new member of the LAS peptidase family. Acta Crystallogr 64:644–650 [CrossRef]
    [Google Scholar]
  56. Kropinski A. M. 2006; Phage therapy – everything old is new again. Can J Infect Dis Med Microbiol 17:297–306[PubMed]
    [Google Scholar]
  57. Kucerova E., Clifton S. W., Xia X. Q., Long F., Porwollik S., Fulton L., Fronick C., Minx P., Kyung K. other authors 2010; Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLoS ONE 5:e9556 [View Article][PubMed]
    [Google Scholar]
  58. Kutter E., Sulakvelidze A. 2005 Bacteriophages – Biology and Applications. Boca Raton, FL: CRC Press;
    [Google Scholar]
  59. Lai M. J., Lin N. T., Hu A., Soo P. C., Chen L. K., Chen L. H., Chang K. C. 2011; Antibacterial activity of Acinetobacter baumannii phage ϕAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 90:529–539 [View Article][PubMed]
    [Google Scholar]
  60. Laslett D., Canback B. 2004; aragorn, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16 [View Article][PubMed]
    [Google Scholar]
  61. Leverentz B., Conway W. S., Camp M. J., Janisiewicz W. J., Abuladze T., Yang M., Saftner R., Sulakvelidze A. 2003; Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519–4526 [View Article][PubMed]
    [Google Scholar]
  62. Lim T. H., Kim M. S., Lee D. H., Lee Y. N., Park J. K., Youn H. N., Lee H. J., Yang S. Y., Cho Y. W. other authors 2012; Use of bacteriophage for biological control of Salmonella enteritidis infection in chicken. Res Vet Sci 93:1173–1178 [View Article][PubMed]
    [Google Scholar]
  63. Lionnet T., Spiering M. M., Benkovic S. J., Bensimon D., Croquette V. 2007; Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc Natl Acad Sci U S A 104:19790–19795 [View Article][PubMed]
    [Google Scholar]
  64. Loc Carrillo C., Atterbury R. J., el-Shibiny A., Connerton P. L., Dillon E., Scott A., Connerton I. F. 2005; Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 71:6554–6563 [View Article][PubMed]
    [Google Scholar]
  65. Loessner M. J., Wendlinger G., Scherer S. 1995; Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16:1231–1241 [View Article][PubMed]
    [Google Scholar]
  66. Lowe T. M., Eddy S. R. 1997; tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964 [View Article][PubMed]
    [Google Scholar]
  67. Martin J., Hartl F. U. 1997; Chaperone-assisted protein folding. Curr Opin Struct Biol 7:41–52 [View Article][PubMed]
    [Google Scholar]
  68. Mikoulinskaia G. V., Odinokova I. V., Zimin A. A., Lysanskaya V. Y., Feofanov S. A., Stepnaya O. A. 2009; Identification and characterization of the metal ion-dependent l-alanoyl-d-glutamate peptidase encoded by bacteriophage T5. FEBS J 276:7329–7342 [View Article][PubMed]
    [Google Scholar]
  69. Moore S. D., Prevelige P. E. Jr 2002; DNA packaging: a new class of molecular motors. Curr Biol 12:R96–R98 [View Article][PubMed]
    [Google Scholar]
  70. Myllykallio H., Lipowski G., Leduc D., Filee J., Forterre P., Liebl U. 2002; An alternative flavin-dependent mechanism for thymidylate synthesis. Science 297:105–107 [View Article][PubMed]
    [Google Scholar]
  71. O’Flaherty S., Coffey A., Meaney W. J., Fitzgerald G. F., Ross R. P. 2005; Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol 41:274–279 [View Article][PubMed]
    [Google Scholar]
  72. O’Flynn G., Ross R. P., Fitzgerald G. F., Coffey A. 2004; Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157 : H7. Appl Environ Microbiol 70:3417–3424 [View Article][PubMed]
    [Google Scholar]
  73. Obeso J. M., Martínez B., Rodríguez A., García P. 2008; Lytic activity of the recombinant staphylococcal bacteriophage ϕH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 128:212–218 [View Article][PubMed]
    [Google Scholar]
  74. Payne K. M., Hatfull G. F. 2012; Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS ONE 7:e34052 [View Article][PubMed]
    [Google Scholar]
  75. Preston V. G., al-Kobaisi M. F., McDougall I. M., Rixon F. J. 1994; The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures. J Gen Virol 75:2355–2366 [View Article][PubMed]
    [Google Scholar]
  76. Rao V. B., Feiss M. 2008; The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681 [View Article][PubMed]
    [Google Scholar]
  77. Rawlings N. D., Barrett A. J. 1995; Evolutionary families of metallopeptidases. Methods Enzymol 248:183–228 [View Article][PubMed]
    [Google Scholar]
  78. Rees C. E., Dodd C. E. 2006; Phage for rapid detection and control of bacterial pathogens in food. Adv Appl Microbiol 59:159–186 [View Article][PubMed]
    [Google Scholar]
  79. Riedel K., Lehner A. 2007; Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7:1217–1231 [View Article][PubMed]
    [Google Scholar]
  80. Rivas L., Coffey B., McAuliffe O., McDonnell M. J., Burgess C. M., Coffey A., Ross R. P., Duffy G. 2010; In vivo and ex vivo evaluations of bacteriophages e11/2 and e4/1c for use in the control of Escherichia coli O157 : H7. Appl Environ Microbiol 76:7210–7216 [View Article][PubMed]
    [Google Scholar]
  81. Rodríguez-Rubio L., Martínez B., Donovan D. M., García P., Rodríguez A. 2013; Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation. PLoS ONE 8:e54828 [View Article][PubMed]
    [Google Scholar]
  82. Rossi R., Montecucco A., Ciarrocchi G., Biamonti G. 1997; Functional characterization of the T4 DNA ligase: a new insight into the mechanism of action. Nucleic Acids Res 25:2106–2113 [View Article][PubMed]
    [Google Scholar]
  83. Rozema E. A., Stephens T. P., Bach S. J., Okine E. K., Johnson R. P., Stanford K., McAllister T. A. 2009; Oral and rectal administration of bacteriophages for control of Escherichia coli O157 : H7 in feedlot cattle. J Food Prot 72:241–250[PubMed] [CrossRef]
    [Google Scholar]
  84. Schatz M. C., Phillippy A. M., Sommer D. D., Delcher A. L., Puiu D., Narzisi G., Salzberg S. L., Pop M. 2011; Hawkeye and amos: visualizing and assessing the quality of genome assemblies. Brief Bioinform 14:213–224 [View Article][PubMed]
    [Google Scholar]
  85. Sharples G. J., Chan S. N., Mahdi A. A., Whitby M. C., Lloyd R. G. 1994; Processing of intermediates in recombination and DNA repair: Identification of a new endonuclease that specifically cleaves Holliday junctions. The EMBO journal 13:6133
    [Google Scholar]
  86. Sharples G. J., Ingleston S. M., Lloyd R. G. 1999; Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181:5543–5550[PubMed]
    [Google Scholar]
  87. Simpson A. A., Tao Y., Leiman P. G., Badasso M. O., He Y., Jardine P. J., Olson N. H., Morais M. C., Grimes S. other authors 2000; Structure of the bacteriophage ϕ29 DNA packaging motor. Nature 408:745–750 [View Article][PubMed]
    [Google Scholar]
  88. Singh A., Poshtiban S., Evoy S. 2013; Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 13:1763–1786 [View Article][PubMed]
    [Google Scholar]
  89. Spellberg B., Bartlett J. G., Gilbert D. N. 2013; The future of antibiotics and resistance. N Engl J Med 368:299–302 [View Article][PubMed]
    [Google Scholar]
  90. Stock I., Wiedemann B. 2002; Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin Microbiol Infect 8:564–578 [View Article][PubMed]
    [Google Scholar]
  91. Viazis S., Akhtar M., Feirtag J., Diez-Gonzalez F. 2011; Reduction of Escherichia coli O157  :  H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol 28:149–157 [View Article][PubMed]
    [Google Scholar]
  92. Wagenaar J. A., Van Bergen M. A. P., Mueller M. A., Wassenaar T. M., Carlton R. M. 2005; Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet Microbiol 109:275–283 [View Article][PubMed]
    [Google Scholar]
  93. Wall S. K., Zhang J., Rostagno M. H., Ebner P. D. 2010; Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol 76:48–53 [View Article][PubMed]
    [Google Scholar]
  94. Walmagh M., Briers Y., dos Santos S. B., Azeredo J., Lavigne R. 2012; Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201φ2-1 and PVP-SE1. PLoS ONE 7:e36991 [View Article][PubMed]
    [Google Scholar]
  95. Walmagh M., Boczkowska B., Grymonprez B., Briers Y., Drulis-Kawa Z., Lavigne R. 2013; Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl Microbiol Biotechnol 97:4369–4375 [View Article][PubMed]
    [Google Scholar]
  96. White M. F., Giraud-Panis M. J. E., Pöhler J. R. G., Lilley D. M. 1997; Recognition and manipulation of branched DNA structure by junction-resolving enzymes. J Mol Biol 269:647–664 [View Article][PubMed]
    [Google Scholar]
  97. Wittmann J., Dreiseikelmann B., Rohde M., Meier-Kolthoff J. P., Bunk B., Rohde C. 2014; First genome sequences of Achromobacter phages reveal new members of the N4 family. Virol J 11:14 [View Article][PubMed]
    [Google Scholar]
  98. Young R. 1992; Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481[PubMed]
    [Google Scholar]
  99. Young R., Bläsi U. 1995; Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev 17:191–205 [View Article][PubMed]
    [Google Scholar]
  100. Zhang H., Bao H., Billington C., Hudson J. A., Wang R. 2012; Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol 31:133–136 [View Article][PubMed]
    [Google Scholar]
  101. Zimmer M., Vukov N., Scherer S., Loessner M. J. 2002; The murein hydrolase of the bacteriophage ϕ3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68:5311–5317 [View Article][PubMed]
    [Google Scholar]
  102. Zuber S., Ngom-Bru C., Barretto C., Bruttin A., Brüssow H., Denou E. 2007; Genome analysis of phage JS98 defines a fourth major subgroup of T4-like phages in Escherichia coli . J Bacteriol 189:8206–8214 [View Article][PubMed]
    [Google Scholar]
  103. Zuber S., Boissin-Delaporte C., Michot L., Iversen C., Diep B., Brüssow H., Breeuwer P. 2008; Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol 1:532–543 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.068494-0
Loading
/content/journal/jgv/10.1099/vir.0.068494-0
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed