1887

Abstract

The 2009 pandemic H1N1 influenza A virus spread across the globe and caused the first influenza pandemic of the 21st century. Many of the molecular factors that contributed to the airborne transmission of this pandemic virus have been determined; however, the direct-contact transmission of this virus remains poorly understood. In this study, we report that a combination of two mutations (N159D and Q226R) in the haemagglutinin (HA) protein of the representative 2009 H1N1 influenza virus A/California/04/2009 (CA04) caused a switch in receptor binding preference from the α2,6-sialoglycan to the α2,3-sialoglycan receptor, and decreased the binding intensities for both glycans. In conjunction with a significantly decreased replication efficiency in the nasal epithelium, this limited human receptor binding affinity resulted in inefficient direct-contact transmission of CA04 between guinea pigs. Our findings highlight the role of the HA gene in the transmission of the influenza virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067694-0
2014-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2612.html?itemId=/content/journal/jgv/10.1099/vir.0.067694-0&mimeType=html&fmt=ahah

References

  1. Belser J. A., Maines T. R., Tumpey T. M., Katz J. M.. ( 2010;). Influenza A virus transmission: contributing factors and clinical implications. . Expert Rev Mol Med 12:, e39. [CrossRef][PubMed]
    [Google Scholar]
  2. Belser J. A., Jayaraman A., Raman R., Pappas C., Zeng H., Cox N. J., Katz J. M., Sasisekharan R., Tumpey T. M.. ( 2011;). Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. . PLoS ONE 6:, e25091. [CrossRef][PubMed]
    [Google Scholar]
  3. Bouvier N. M., Rahmat S., Pica N.. ( 2012;). Enhanced mammalian transmissibility of seasonal influenza A/H1N1 viruses encoding an oseltamivir-resistant neuraminidase. . J Virol 86:, 7268–7279. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Z., Wang W., Zhou H., Suguitan A. L. Jr, Shambaugh C., Kim L., Zhao J., Kemble G., Jin H.. ( 2010;). Generation of live attenuated novel influenza virus A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. . J Virol 84:, 44–51. [CrossRef][PubMed]
    [Google Scholar]
  5. Chou Y. Y., Albrecht R. A., Pica N., Lowen A. C., Richt J. A., García-Sastre A., Palese P., Hai R.. ( 2011;). The M segment of the 2009 new pandemic H1N1 influenza virus is critical for its high transmission efficiency in the guinea pig model. . J Virol 85:, 11235–11241. [CrossRef][PubMed]
    [Google Scholar]
  6. Gao Y., Zhang Y., Shinya K., Deng G., Jiang Y., Li Z., Guan Y., Tian G., Li Y.. & other authors ( 2009;). Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. . PLoS Pathog 5:, e1000709. [CrossRef][PubMed]
    [Google Scholar]
  7. Hatta M., Hatta Y., Kim J. H., Watanabe S., Shinya K., Nguyen T., Lien P. S., Le Q. M., Kawaoka Y.. ( 2007;). Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. . PLoS Pathog 3:, 1374–1379. [CrossRef][PubMed]
    [Google Scholar]
  8. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., Sorrell E. M., Bestebroer T. M., Burke D. F.. & other authors ( 2012;). Airborne transmission of influenza A/H5N1 virus between ferrets. . Science 336:, 1534–1541. [CrossRef][PubMed]
    [Google Scholar]
  9. Hoffmann E., Neumann G., Kawaoka Y., Hobom G., Webster R. G.. ( 2000;). A DNA transfection system for generation of influenza A virus from eight plasmids. . Proc Natl Acad Sci U S A 97:, 6108–6113. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimble J. B., Sorrell E., Shao H., Martin P. L., Perez D. R.. ( 2011;). Compatibility of H9N2 avian influenza surface genes and 2009 pandemic H1N1 internal genes for transmission in the ferret model. . Proc Natl Acad Sci U S A 108:, 12084–12088. [CrossRef][PubMed]
    [Google Scholar]
  11. Lakdawala S. S., Lamirande E. W., Suguitan A. L. Jr, Wang W., Santos C. P., Vogel L., Matsuoka Y., Lindsley W. G., Jin H., Subbarao K.. ( 2011;). Eurasian-origin gene segments contribute to the transmissibility, aerosol release, and morphology of the 2009 pandemic H1N1 influenza virus. . PLoS Pathog 7:, e1002443. [CrossRef][PubMed]
    [Google Scholar]
  12. Lowen A., Palese P.. ( 2009;). Transmission of influenza virus in temperate zones is predominantly by aerosol, in the tropics by contact: a hypothesis. . PLoS Curr 1:, RRN1002. [CrossRef][PubMed]
    [Google Scholar]
  13. Lowen A. C., Mubareka S., Steel J., Palese P.. ( 2007;). Influenza virus transmission is dependent on relative humidity and temperature. . PLoS Pathog 3:, 1470–1476. [CrossRef][PubMed]
    [Google Scholar]
  14. Lowen A. C., Steel J., Mubareka S., Palese P.. ( 2008;). High temperature (30 degrees C) blocks aerosol but not contact transmission of influenza virus. . J Virol 82:, 5650–5652. [CrossRef][PubMed]
    [Google Scholar]
  15. Maines T. R., Jayaraman A., Belser J. A., Wadford D. A., Pappas C., Zeng H., Gustin K. M., Pearce M. B., Viswanathan K.. & other authors ( 2009;). Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. . Science 325:, 484–487.[PubMed]
    [Google Scholar]
  16. Matrosovich M. N., Matrosovich T. Y., Gray T., Roberts N. A., Klenk H. D.. ( 2004;). Human and avian influenza viruses target different cell types in cultures of human airway epithelium. . Proc Natl Acad Sci U S A 101:, 4620–4624. [CrossRef][PubMed]
    [Google Scholar]
  17. Rudneva I., Ignatieva A., Timofeeva T., Shilov A., Kushch A., Masalova O., Klimova R., Bovin N., Mochalova L., Kaverin N.. ( 2012;). Escape mutants of pandemic influenza A/H1N1 2009 virus: variations in antigenic specificity and receptor affinity of the hemagglutinin. . Virus Res 166:, 61–67. [CrossRef][PubMed]
    [Google Scholar]
  18. Sun Y., Bi Y., Pu J., Hu Y., Wang J., Gao H., Liu L., Xu Q., Tan Y.. & other authors ( 2010;). Guinea pig model for evaluating the potential public health risk of swine and avian influenza viruses. . PLoS ONE 5:, e15537. [CrossRef][PubMed]
    [Google Scholar]
  19. Suptawiwat O., Kongchanagul A., Chan-It W., Thitithanyanont A., Wiriyarat W., Chaichuen K., Songserm T., Suzuki Y., Puthavathana P., Auewarakul P.. ( 2008;). A simple screening assay for receptor switching of avian influenza viruses. . J Clin Virol 42:, 186–189. [CrossRef][PubMed]
    [Google Scholar]
  20. Tumpey T. M., Maines T. R., Van Hoeven N., Glaser L., Solórzano A., Pappas C., Cox N. J., Swayne D. E., Palese P.. & other authors ( 2007;). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. . Science 315:, 655–659. [CrossRef][PubMed]
    [Google Scholar]
  21. van Doremalen N., Shelton H., Roberts K. L., Jones I. M., Pickles R. J., Thompson C. I., Barclay W. S.. ( 2011;). A single amino acid in the HA of pH1N1 2009 influenza virus affects cell tropism in human airway epithelium, but not transmission in ferrets. . PLoS ONE 6:, e25755. [CrossRef][PubMed]
    [Google Scholar]
  22. Van Hoeven N., Pappas C., Belser J. A., Maines T. R., Zeng H., García-Sastre A., Sasisekharan R., Katz J. M., Tumpey T. M.. ( 2009;). Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. . Proc Natl Acad Sci U S A 106:, 3366–3371. [CrossRef][PubMed]
    [Google Scholar]
  23. Wan H., Sorrell E. M., Song H., Hossain M. J., Ramirez-Nieto G., Monne I., Stevens J., Cattoli G., Capua I.. & other authors ( 2008;). Replication and transmission of H9N2 influenza viruses in ferrets: evaluation of pandemic potential. . PLoS ONE 3:, e2923. [CrossRef][PubMed]
    [Google Scholar]
  24. Yasugi M., Nakamura S., Daidoji T., Kawashita N., Ramadhany R., Yang C. S., Yasunaga T., Iida T., Horii T.. & other authors ( 2012;). Frequency of D222G and Q223R hemagglutinin mutants of pandemic (H1N1) 2009 influenza virus in Japan between 2009 and 2010. . PLoS ONE 7:, e30946. [CrossRef][PubMed]
    [Google Scholar]
  25. Yen H. L., Liang C. H., Wu C. Y., Forrest H. L., Ferguson A., Choy K. T., Jones J., Wong D. D., Cheung P. P.. & other authors ( 2011;). Hemagglutinin-neuraminidase balance confers respiratory-droplet transmissibility of the pandemic H1N1 influenza virus in ferrets. . Proc Natl Acad Sci U S A 108:, 14264–14269. [CrossRef][PubMed]
    [Google Scholar]
  26. Zhang Y., Zhang Q., Gao Y., He X., Kong H., Jiang Y., Guan Y., Xia X., Shu Y.. & other authors ( 2012;). Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. . J Virol 86:, 9666–9674. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067694-0
Loading
/content/journal/jgv/10.1099/vir.0.067694-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error