1887

Abstract

Alternative methods to the standard haemagglutination inhibition (HI) and neutralization tests to probe the antigenic properties of the influenza virus haemagglutinin (HA) were developed in this study. Vaccinia virus recombinants expressing reference HAs were used to immunize rabbits from which polyclonal antibodies were obtained. These antibodies were subtype specific but showed limited intra-subtype strain specificity in ELISA. The discriminatory capacity of these antibodies was, however, markedly increased after adsorption to cells infected with heterologous influenza viruses, revealing antigenic differences that were otherwise undistinguishable by standard HI and neutralization tests. Furthermore, the unadsorbed antibodies could be used to select escape mutants of the reference strain, which after sequencing unveiled amino acid changes responsible of the noted antigenic differences. These procedures therefore provide alternative methods for the antigenic characterization of influenza HA and might be useful in studies of HA antigenic evolution.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067413-0
2014-10-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2140.html?itemId=/content/journal/jgv/10.1099/vir.0.067413-0&mimeType=html&fmt=ahah

References

  1. Blasco R., Moss B.. ( 1995;). Selection of recombinant vaccinia viruses on the basis of plaque formation. . Gene 158:, 157–162. [CrossRef][PubMed]
    [Google Scholar]
  2. Couch R. B., Kasel J. A.. ( 1983;). Immunity to influenza in man. . Annu Rev Microbiol 37:, 529–549. [CrossRef][PubMed]
    [Google Scholar]
  3. Gamblin S. J., Skehel J. J.. ( 2010;). Influenza hemagglutinin and neuraminidase membrane glycoproteins. . J Biol Chem 285:, 28403–28409. [CrossRef][PubMed]
    [Google Scholar]
  4. García-Barreno B., Delgado T., Benito S., Casas I., Pozo F., Cuevas M. T., Mas V., Trento A., Rodriguez-Frandsen A.. & other authors ( 2014;). Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin. . J Gen Virol 95:, 1033–1042. [CrossRef][PubMed]
    [Google Scholar]
  5. Hirst G. K.. ( 1943;). Studies of antigenic differences among strains of influenza A by means of red cell agglutination. . J Exp Med 78:, 407–423. [CrossRef][PubMed]
    [Google Scholar]
  6. Koel B. F., Burke D. F., Bestebroer T. M., van der Vliet S., Zondag G. C., Vervaet G., Skepner E., Lewis N. S., Spronken M. I.. & other authors ( 2013;). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. . Science 342:, 976–979. [CrossRef][PubMed]
    [Google Scholar]
  7. Koopmans M., Wilbrink B., Conyn M., Natrop G., van der Nat H., Vennema H., Meijer A., van Steenbergen J., Fouchier R.. & other authors ( 2004;). Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. . Lancet 363:, 587–593. [CrossRef][PubMed]
    [Google Scholar]
  8. Sánchez-Fauquier A., Villanueva N., Melero J. A.. ( 1987;). Isolation of cross-reactive, subtype-specific monoclonal antibodies against influenza virus HA1 and HA2 hemagglutinin subunits. . Arch Virol 97:, 251–265. [CrossRef][PubMed]
    [Google Scholar]
  9. Shih A. C., Hsiao T. C., Ho M. S., Li W. H.. ( 2007;). Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. . Proc Natl Acad Sci U S A 104:, 6283–6288. [CrossRef][PubMed]
    [Google Scholar]
  10. Smith W., Andrewes C. H., Laidlaw P. P.. ( 1933;). A virus obtained from influenza patients. . Lancet 222:, 66–68. [CrossRef]
    [Google Scholar]
  11. Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A.. ( 2004;). Mapping the antigenic and genetic evolution of influenza virus. . Science 305:, 371–376. [CrossRef][PubMed]
    [Google Scholar]
  12. Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S.. & other authors ( 2013;). New world bats harbor diverse influenza A viruses. . PLoS Pathog 9:, e1003657. [CrossRef][PubMed]
    [Google Scholar]
  13. Uyeki T. M., Cox N. J.. ( 2013;). Global concerns regarding novel influenza A (H7N9) virus infections. . N Engl J Med 368:, 1862–1864. [CrossRef][PubMed]
    [Google Scholar]
  14. Virelizier J. L.. ( 1975;). Host defenses against influenza virus: the role of anti-hemagglutinin antibody. . J Immunol 115:, 434–439.[PubMed]
    [Google Scholar]
  15. WHO Collaborating Centre for Reference and Research on Influenza ( 2009;). Interim report September 2009. London:: National Institute for Medical Research;. Available at: http://www.nimr.mrc.ac.uk/documents/about/interim_report_sep_2009.pdf.
    [Google Scholar]
  16. Wright P. F., Neumann G., Kawaoka Y.. ( 2013;). Orthomyxoviruses. . In Fields Virology, , 5th edn.. pp. 1186–1243. Edited by Knipe D. M., Howley P. M... Philadelphia:: Wolters Kluwer/Lippincott Wlliams & Wilkins;.
    [Google Scholar]
  17. Zhang W., Qi J., Shi Y., Li Q., Gao F., Sun Y., Lu X., Lu Q., Vavricka C. J.. & other authors ( 2010;). Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. . Protein Cell 1:, 459–467. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067413-0
Loading
/content/journal/jgv/10.1099/vir.0.067413-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error