1887

Abstract

We demonstrated previously that immunization with a DNA vaccine expressing the Japanese encephalitis virus (JEV) envelope (E) protein conferred a high level of protection through a poorly neutralizing antibody response. Here, we further investigated the role of the IgG subclass in this antibody-dependent protection using cytokine co-immunization and cytokine-deficient mice. A significant difference in IgG2a/c but not IgG1 was observed between mice that survived or died following a lethal challenge. Correspondingly, the IgG2a/c response and protection increased in IL-4-deficient mice but decreased in IFN-γ-deficient mice, highlighting the importance of IgG2a/c. In addition, the restoration of protection and E-specific IgG2a/c production in IFN-γ-deficient mice by a T helper (Th) type 1-biased intramuscular immunization suggested that IgG2a/c but not IFN-γ was the major component for protection. The failure of protection against a direct intracranial challenge indicated that IgG2a/c-mediated protection was restricted to outside the central nervous system. Consistent with this conclusion, passive transfer of E-specific antisera conferred protection only pre-exposure to JEV. Therefore, our data provided evidence that the IgG subclass plays an important role in protection against JEV, particular in poorly neutralizing E-specific antibodies, and Th1-biased IgG2a/c confers better protection than Th2-biased IgG1 against JEV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.067280-0
2014-09-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1983.html?itemId=/content/journal/jgv/10.1099/vir.0.067280-0&mimeType=html&fmt=ahah

References

  1. Baldridge J. R., Buchmeier M. J.. ( 1992;). Mechanisms of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. . J Virol 66:, 4252–4257.[PubMed]
    [Google Scholar]
  2. Barr T. A., Brown S., Mastroeni P., Gray D.. ( 2009;). B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. . J Immunol 183:, 1005–1012. [CrossRef][PubMed]
    [Google Scholar]
  3. Burke D. S., Leake C. J.. ( 1988;). Japanese Encephalitis. Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  4. Chen H. W., Pan C. H., Liau M. Y., Jou R., Tsai C. J., Wu H. J., Lin Y. L., Tao M. H.. ( 1999;). Screening of protective antigens of Japanese encephalitis virus by DNA immunization: a comparative study with conventional viral vaccines. . J Virol 73:, 10137–10145.[PubMed]
    [Google Scholar]
  5. Chow Y. H., Chiang B. L., Lee Y. L., Chi W. K., Lin W. C., Chen Y. T., Tao M. H.. ( 1998;). Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. . J Immunol 160:, 1320–1329.[PubMed]
    [Google Scholar]
  6. Chung K. M., Nybakken G. E., Thompson B. S., Engle M. J., Marri A., Fremont D. H., Diamond M. S.. ( 2006;). Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. . J Virol 80:, 1340–1351. [CrossRef][PubMed]
    [Google Scholar]
  7. Chung K. M., Thompson B. S., Fremont D. H., Diamond M. S.. ( 2007;). Antibody recognition of cell surface-associated NS1 triggers Fc-gamma receptor-mediated phagocytosis and clearance of West Nile virus-infected cells. . J Virol 81:, 9551–9555. [CrossRef][PubMed]
    [Google Scholar]
  8. Clynes R., Takechi Y., Moroi Y., Houghton A., Ravetch J. V.. ( 1998;). Fc receptors are required in passive and active immunity to melanoma. . Proc Natl Acad Sci U S A 95:, 652–656. [CrossRef][PubMed]
    [Google Scholar]
  9. Coutelier J. P., van der Logt J. T., Heessen F. W., Warnier G., Van Snick J.. ( 1987;). IgG2a restriction of murine antibodies elicited by viral infections. . J Exp Med 165:, 64–69. [CrossRef][PubMed]
    [Google Scholar]
  10. Ding D., Kilgore P. E., Clemens J. D., Wei L., Zhi-Yi X.. ( 2003;). Cost-effectiveness of routine immunization to control Japanese encephalitis in Shanghai, China. . Bull World Health Organ 81:, 334–342.[PubMed]
    [Google Scholar]
  11. Engle M. J., Diamond M. S.. ( 2003;). Antibody prophylaxis and therapy against West Nile virus infection in wild-type and immunodeficient mice. . J Virol 77:, 12941–12949. [CrossRef][PubMed]
    [Google Scholar]
  12. Fossati-Jimack L., Ioan-Facsinay A., Reininger L., Chicheportiche Y., Watanabe N., Saito T., Hofhuis F. M., Gessner J. E., Schiller C.. & other authors ( 2000;). Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcγ receptor III. . J Exp Med 191:, 1293–1302. [CrossRef][PubMed]
    [Google Scholar]
  13. Hamaguchi Y., Xiu Y., Komura K., Nimmerjahn F., Tedder T. F.. ( 2006;). Antibody isotype-specific engagement of Fcγ receptors regulates B lymphocyte depletion during CD20 immunotherapy. . J Exp Med 203:, 743–753. [CrossRef][PubMed]
    [Google Scholar]
  14. Hawkes R. A., Roehrig J. T., Hunt A. R., Moore G. A.. ( 1988;). Antigenic structure of the Murray Valley encephalitis virus E glycoprotein. . J Gen Virol 69:, 1105–1109. [CrossRef][PubMed]
    [Google Scholar]
  15. Heusser C. H., Anderson C. L., Grey H. M.. ( 1977;). Receptors for IgG: subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line. . J Exp Med 145:, 1316–1327. [CrossRef][PubMed]
    [Google Scholar]
  16. Hoke C. H., Nisalak A., Sangawhipa N., Jatanasen S., Laorakapongse T., Innis B. L., Kotchasenee S., Gingrich J. B., Latendresse J.. & other authors ( 1988;). Protection against Japanese encephalitis by inactivated vaccines. . N Engl J Med 319:, 608–614. [CrossRef][PubMed]
    [Google Scholar]
  17. Hombach J., Solomon T., Kurane I., Jacobson J., Wood D.. ( 2005;). Report on a WHO consultation on immunological endpoints for evaluation of new Japanese encephalitis vaccines, WHO, Geneva, 2–3 September, 2004. . Vaccine 23:, 5205–5211. [CrossRef][PubMed]
    [Google Scholar]
  18. Huber V. C., Lynch J. M., Bucher D. J., Le J., Metzger D. W.. ( 2001;). Fc receptor-mediated phagocytosis makes a significant contribution to clearance of influenza virus infections. . J Immunol 166:, 7381–7388. [CrossRef][PubMed]
    [Google Scholar]
  19. Kaufman B. M., Summers P. L., Dubois D. R., Cohen W. H., Gentry M. K., Timchak R. L., Burke D. S., Eckels K. H.. ( 1989;). Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. . Am J Trop Med Hyg 41:, 576–580.[PubMed]
    [Google Scholar]
  20. Kimura-Kuroda J., Yasui K.. ( 1988;). Protection of mice against Japanese encephalitis virus by passive administration with monoclonal antibodies. . J Immunol 141:, 3606–3610.[PubMed]
    [Google Scholar]
  21. Kipps T. J., Parham P., Punt J., Herzenberg L. A.. ( 1985;). Importance of immunoglobulin isotype in human antibody-dependent, cell-mediated cytotoxicity directed by murine monoclonal antibodies. . J Exp Med 161:, 1–17. [CrossRef][PubMed]
    [Google Scholar]
  22. Konishi E., Mason P. W.. ( 1993;). Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. . J Virol 67:, 1672–1675.[PubMed]
    [Google Scholar]
  23. Kreil T. R., Eibl M. M.. ( 1997;). Pre- and postexposure protection by passive immunoglobulin but no enhancement of infection with a flavivirus in a mouse model. . J Virol 71:, 2921–2927.[PubMed]
    [Google Scholar]
  24. Larena M., Regner M., Lee E., Lobigs M.. ( 2011;). Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. . J Virol 85:, 5446–5455. [CrossRef][PubMed]
    [Google Scholar]
  25. Larena M., Regner M., Lobigs M.. ( 2013;). Cytolytic effector pathways and IFN-γ help protect against Japanese encephalitis. . Eur J Immunol 43:, 1789–1798. [CrossRef][PubMed]
    [Google Scholar]
  26. Li Y., Counor D., Lu P., Duong V., Yu Y., Deubel V.. ( 2012;). Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model. . Virol J 9:, 135. [CrossRef][PubMed]
    [Google Scholar]
  27. Mackenzie J. S., Gubler D. J., Petersen L. R.. ( 2004;). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl), S98–S109. [CrossRef][PubMed]
    [Google Scholar]
  28. Markine-Goriaynoff D., Coutelier J. P.. ( 2002;). Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactate dehydrogenase-elevating virus-induced polioencephalomyelitis revealed with switch mutants. . J Virol 76:, 432–435. [CrossRef][PubMed]
    [Google Scholar]
  29. Miyajima I., Dombrowicz D., Martin T. R., Ravetch J. V., Kinet J. P., Galli S. J.. ( 1997;). Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and Fc gammaRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. . J Clin Invest 99:, 901–914. [CrossRef][PubMed]
    [Google Scholar]
  30. Neuberger M. S., Rajewsky K.. ( 1981;). Activation of mouse complement by monoclonal mouse antibodies. . Eur J Immunol 11:, 1012–1016. [CrossRef][PubMed]
    [Google Scholar]
  31. Nimmerjahn F., Ravetch J. V.. ( 2005;). Divergent immunoglobulin g subclass activity through selective Fc receptor binding. . Science 310:, 1510–1512. [CrossRef][PubMed]
    [Google Scholar]
  32. Nimmerjahn F., Bruhns P., Horiuchi K., Ravetch J. V.. ( 2005;). FcgammaRIV: a novel FcR with distinct IgG subclass specificity. . Immunity 23:, 41–51. [CrossRef][PubMed]
    [Google Scholar]
  33. Pan C. H., Chen H. W., Huang H. W., Tao M. H.. ( 2001;). Protective mechanisms induced by a Japanese encephalitis virus DNA vaccine: requirement for antibody but not CD8+ cytotoxic T-cell responses. . J Virol 75:, 11457–11463. [CrossRef][PubMed]
    [Google Scholar]
  34. Peng S. L., Szabo S. J., Glimcher L. H.. ( 2002;). T-bet regulates IgG class switching and pathogenic autoantibody production. . Proc Natl Acad Sci U S A 99:, 5545–5550. [CrossRef][PubMed]
    [Google Scholar]
  35. Phillpotts R. J., Stephenson J. R., Porterfield J. S.. ( 1987;). Passive immunization of mice with monoclonal antibodies raised against tick-borne encephalitis virus. . Arch Virol 93:, 295–301. [CrossRef][PubMed]
    [Google Scholar]
  36. Pricop L., Redecha P., Teillaud J. L., Frey J., Fridman W. H., Sautès-Fridman C., Salmon J. E.. ( 2001;). Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines. . J Immunol 166:, 531–537. [CrossRef][PubMed]
    [Google Scholar]
  37. Ravetch J. V.. ( 2003;). Fc Receptors. Philadelphia, PA:: Lippincott-Raven;.
    [Google Scholar]
  38. Schlageter A. M., Kozel T. R.. ( 1990;). Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. . Infect Immun 58:, 1914–1918.[PubMed]
    [Google Scholar]
  39. Schlesinger J. J., Brandriss M. W., Walsh E. E.. ( 1985;). Protection against 17D yellow fever encephalitis in mice by passive transfer of monoclonal antibodies to the nonstructural glycoprotein gp48 and by active immunization with gp48. . J Immunol 135:, 2805–2809.[PubMed]
    [Google Scholar]
  40. Schmaljohn A. L., Johnson E. D., Dalrymple J. M., Cole G. A.. ( 1982;). Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. . Nature 297:, 70–72. [CrossRef][PubMed]
    [Google Scholar]
  41. Schreier P. H., Bothwell A. L., Mueller-Hill B., Baltimore D.. ( 1981;). Multiple differences between the nucleic acid sequences of the IgG2aa and IgG2ab alleles of the mouse. . Proc Natl Acad Sci U S A 78:, 4495–4499. [CrossRef][PubMed]
    [Google Scholar]
  42. Shresta S., Kyle J. L., Snider H. M., Basavapatna M., Beatty P. R., Harris E.. ( 2004;). Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. . J Virol 78:, 2701–2710. [CrossRef][PubMed]
    [Google Scholar]
  43. Shrestha B., Wang T., Samuel M. A., Whitby K., Craft J., Fikrig E., Diamond M. S.. ( 2006;). Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. . J Virol 80:, 5338–5348. [CrossRef][PubMed]
    [Google Scholar]
  44. Smythies L. E., Waites K. B., Lindsey J. R., Harris P. R., Ghiara P., Smith P. D.. ( 2000;). Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. . J Immunol 165:, 1022–1029. [CrossRef][PubMed]
    [Google Scholar]
  45. Srivastava A. K., Putnak J. R., Lee S. H., Hong S. P., Moon S. B., Barvir D. A., Zhao B., Olson R. A., Kim S. O.. & other authors ( 2001;). A purified inactivated Japanese encephalitis virus vaccine made in Vero cells. . Vaccine 19:, 4557–4565. [CrossRef][PubMed]
    [Google Scholar]
  46. van den Hurk A. F., Ritchie S. A., Mackenzie J. S.. ( 2009;). Ecology and geographical expansion of Japanese encephalitis virus. . Annu Rev Entomol 54:, 17–35. [CrossRef][PubMed]
    [Google Scholar]
  47. Vogt M. R., Dowd K. A., Engle M., Tesh R. B., Johnson S., Pierson T. C., Diamond M. S.. ( 2011;). Poorly neutralizing cross-reactive antibodies against the fusion loop of West Nile virus envelope protein protect in vivo via Fcgamma receptor and complement-dependent effector mechanisms. . J Virol 85:, 11567–11580. [CrossRef][PubMed]
    [Google Scholar]
  48. Zhang Z., Goldschmidt T., Salter H.. ( 2012;). Possible allelic structure of IgG2a and IgG2c in mice. . Mol Immunol 50:, 169–171. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.067280-0
Loading
/content/journal/jgv/10.1099/vir.0.067280-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error