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In December 1983, a seminal paper appeared on the overexpression of human IFN-b in insect

cells with a genetically engineered baculovirus. The finding that baculoviruses produced massive

amounts of two proteins (polyhedrin and p10) by means of two very strong promoters and that the

corresponding genes were dispensable for virus propagation in insect cells was crucial in the

development of this expression system. During the next 30 years, major improvements were

achieved over the original baculovirus expression vector (BEV) system, facilitating the engineering

of the baculovirus vectors, the modification of the sugar moieties of glycoproteins expressed in

insect cells and the scale-up of the cell culture process. To date, thousands of recombinant

proteins have been produced in this successful expression system, including several protein-

based human and veterinary vaccines that are currently on the market. Viral vectors based on

adeno-associated virus are being produced using recombinant baculovirus technology and the

first gene therapy treatment based on this method has been registered. Specially adapted BEVs

are used to deliver and express heterologous genes in mammalian cells, and they may be used for

gene therapy and cancer treatment in the future. The purpose of this review is to highlight the

thirtieth ‘anniversary’ of this expression system by summarizing the fundamental research and

major technological advances that allowed its development, whilst noting challenges for further

improvements.

Introduction

The first paper that illustrated the potential of using the
baculovirus Autographa californica multiple nucleopolyhe-
drovirus (AcMNPV) to produce recombinant proteins in
insect cells was published by the group of Max Summers at
Texas A&M University in December 1983 (Smith et al.,
1983b). In that seminal paper, Smith et al. (1983b) de-
scribed the expression of human IFN-b with a recombinant
AcMNPV virus by exploiting the polyhedrin promoter.
Only a few months later, a similar paper was published by
Lois Miller and co-workers (at the time at the University of
Idaho), in this case on the expression of Escherichia coli b-
galactosidase (Pennock et al., 1984). These papers hallmark
the birth of the baculovirus expression vector (BEV) system.
During the 30 years since these publications, baculovirus-
based expression technology has matured considerably, and
is now commonly used to produce proteins of scientific
interest and to manufacture commercial vaccines worldwide,
both for human and veterinarian use. In addition, recom-
binant baculoviruses have found applications as gene delivery
vectors for mammalian cells and as expression vectors for
adeno-associated virus (AAV)-based gene therapy products.

Here, we celebrate the thirtieth anniversary of the BEV
system by briefly reviewing its development, and giving

credit to its pioneers and major contributors. Today, this
technology serves numerous purposes for scientific re-
search, and in veterinary and human medical applications.
We also present a forward view on what more may be
possible to further develop and optimize this protein pro-
duction system. We refer to other review papers with more
detailed information to allow researchers to work with this
system (e.g. Contreras-Gómez et al., 2014; Jarvis, 2009;
Possee & King, 2007; Rohrmann, 2013; van Oers, 2011).

Preceding baculovirus research

The pioneering fundamental research that allowed the first
use of AcMNPV as an expression vector is described in an
excellent review by Summers (2006). Here, we present a
short history summarizing the milestones in knowledge
gain and technological development (Table 1) that enabled
successful expression of heterologous genes in insect cells
using a baculovirus vector. It all started with the estab-
lishment of insect cell lines in specially developed insect cell
culture media (Gaw et al., 1959; Grace, 1962; Hink, 1970).
This achievement was followed by the initial discovery and
biological analysis of the AcMNPV virus, isolated by D. L.
Clancy from a single alfalfa looper (A. californica) specimen
(Vail et al., 1971). The observation that the haemolymph of
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AcMNPV-infected caterpillars was highly infectious for
cultured insect cells (Vaughn & Faulkner, 1963) was crucial
for the development of the BEV system. Over time this
finding led to the understanding that the occlusion-derived
viruses (ODVs) present in the polyhedral-shaped viral
occlusion bodies (OBs) were structurally and functionally
different from the non-occluded viruses present in the
haemolymph, which are called budded viruses (BV) today
(Henderson et al., 1974; Volkman et al., 1976; Volkman &
Summers, 1977). The demonstration that transfection of
insects with baculovirus DNA led to successful infection
(Burand et al., 1980) was significant for the development of
BEV technology and user convenience.

The development of a plaque assay method for AcMNPV
(Brown & Faulkner, 1977) along the lines of methods devel-
oped for mammalian viruses with animal cells (Dulbecco,
1952) was technologically important. The plaque assay
method was designed originally to quantify infectious virus
concentrations, but later proved useful for isolation of
natural and recombinant genotypes. Restriction enzyme
analysis of DNA of plaque-isolated AcMNPV strains con-
firmed the presence of natural genetic variants (Lee & Miller,
1978; Smith & Summers, 1978), and allowed the molecular
cloning and mapping of individual genomic fragments
(Lübbert et al., 1981). The various mapping exercises finally
led to the construction of a physical consensus map of the
AcMNPV genome (Vlak & Smith, 1982), which aided in the
final sequence assembly of the genome (Ayres et al., 1994).

By analysing protein patterns in infected cells, it became
clear that different proteins were induced during the course
of infection, which were roughly divided into three
temporal classes (Carstens et al., 1979; Dobos & Cochran,
1980). Towards the end of infection, infected cells
produced large amounts of polyhedrin – the protein that
forms the matrix of OBs (Fig. 1a). The proof that the
genetic information for this protein was present in the viral
genome first came from hybridization experiments
between RNA of infected cells and viral DNA, followed
by in vitro translation of selected RNAs into polyhedrin
protein (van der Beek et al., 1980). The polyhedrin gene
(polh) was pinpointed to the EcoRI fragment I (Vlak et al.,
1981) and subsequently fine-mapped by transcriptional

analysis to the HindIII fragment V (Adang & Miller, 1982).
The sequence of the polh gene was published in 1983
(Hooft van Iddekinge et al., 1983).

Experimental evidence showing that the polyhedrin protein
was not essential for virus replication in cell culture (Smith
et al., 1983a) was a key finding and fundamental to BEV
design. Smith et al. (1983a) generated the evidence in co-
transfection experiments using purified viral DNA and
plasmid vectors that carried the above-mentioned AcMNPV
EcoRI fragment I from which various parts of the polh gene
had been deleted. The authors were able to obtain infectious
viruses that they selected based on the OB– phenotype of
infected-cell plaques (Fig. 1b).

First BEVs

In the same year, Smith et al. (1983b) published their data
on the expression of human IFN-b with a recombinant
baculovirus. They used plasmids that carried the coding
sequence of IFN-b together with its 39 UTR harbouring the
polyadenylation motif for their co-transfection experiments.
The IFN-b sequence was inserted at several locations in the
AcMNPV EcoRI fragment I in the proximity of the putative
polh promoter. Cells infected with the purified, OB–

recombinant virus produced high levels of IFN-b, of which
95 % was secreted into the culture medium. The authors also
demonstrated that the IFN-b signal peptide was cleaved off
and that the recombinant IFN-b was glycosylated, indicating
that it followed the normal protein export route via the
endoplasmic reticulum (ER). The choice of the heterologous
gene suggests that the authors realized the potential impact
of their finding as they produced a protein of medical
interest. A few years after the initial development of the BEV
system, AcMNPV was used to produce another protein of
medical interest – human IL-2 (Smith et al., 1985). A similar
procedure was followed to express human IFN-a in
silkworm cells, using the baculovirus Bombyx mori nucleo-
polyhedrovirus (BmNPV) (Maeda et al., 1985).

As early as 1983–1984, several properties of AcMNPV were
recognized as being helpful for the development of the BEV
system (Pennock et al., 1984; Smith et al., 1983c). These
included (i) the rod-shaped nature of the baculovirus

Table 1. Milestones leading to the invention of the baculovirus expression system

Description Impact for research and development References

Isolation of AcMNPV Initial discovery Vail et al. (1971)

Establishment of first insect cell lines In vitro studies Gaw et al. (1959), Grace (1962), Hink (1970)

Infectivity of haemolymph for cells in culture BV/ODV difference Vaughn & Faulkner (1963),

Characteristics of virus produced in cell culture Infection in cell culture Henderson et al. (1974)

AcMNPV plaque assay Purification of genetic variants Brown & Faulkner (1977)

Infectivity of baculovirus DNA Transfection Burand et al. (1980)

Physical map of AcMNPV Cloning of individual fragments Vlak & Smith (1982)

Mapping and sequencing of the polyhedrin gene Vector construction Adang & Miller (1982), Vlak et al. (1981)

Polyhedrin protein is not essential in cell culture Use of polyhedrin promoter for foreign

gene expression

Smith et al. (1983b)
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virion that potentially allowed for the insertion of large
pieces of extra DNA (in contrast to icosahedral viruses),
(ii) the fact that the polh gene had a very strong promoter
which was active after BV production and hence (iii) that
polyhedrin was not needed for virus amplification in cell
culture. In addition, the absence of the polyhedrin protein
in cells infected with the recombinant viruses could be used
as a visible marker for the selection of the recombinant
viruses (Fig. 1b). The presumed inherent safety of this
insect-virus-based expression system was also mentioned in
1983 (Smith et al., 1983c), based on the knowledge that
baculoviruses are non-pathogenic to vertebrates.

Baculovirus very late gene expression

The TAAG motif was first recognized as a transcription
start site when studying the baculovirus p10 gene (Kuzio
et al., 1984), which had been mapped just previously
(Rohel et al., 1983; Smith et al., 1983c). The P10 protein
was shown to be produced in large amounts, and to form
fibrillar structures in the nucleus and cytoplasm (Fig. 1a),
which were required for efficient OB release from infected
cells (van Oers & Vlak, 1997). The requirements for polh
promoter activity, including a similar TAAG motif, were
analysed in detail a few years later (Ooi et al., 1989).

As indicated above, protein profiles of infected cells sug-
gested three temporal classes of gene expression. Sub-
sequently, detailed analysis of the regulated cascade of gene
expression showed that there were in fact four classes of
genes: early, delayed early, late and the special class of very
late genes, which comprised the polh and p10 genes (Friesen
& Miller, 1985; Mainprize et al., 1986; Rice & Miller, 1986;

Rohel & Faulkner, 1984). Early genes were expressed in the
presence of DNA synthesis inhibitors (i.e. before replica-
tion), whilst late and very late genes were inhibited by
aphidicolin. Early viral genes contain promoters recognized
by host RNA polymerases. Eighteen baculovirus genes were
shown to be needed for late viral gene expression (Todd
et al., 1995). Both late and very late genes were found to
contain TAAG motifs in their promoters. These genes were
transcribed only by a virus-encoded RNA polymerase
complex, which consisted of four subunits: the late essential
factor (LEF)-4 (capping enzyme), LEF-8 (RNA polymerase),
LEF-9 and P47 (helicase) (Guarino et al., 1998a, b; Passarelli
et al., 1994). The expression of the very late genes also
required very late factor (VLF)-1 (McLachlin & Miller, 1994)
and the host factor polyhedrin promoter binding protein
(PPBP) (Ghosh et al., 1998).

The class of very late genes is unique to baculoviruses. The
two very late genes are dispensable for progeny virus
production that takes place in the late phase. This implies
that the very strong polh and p10 promoters can be used in
the context of a baculovirus infection to drive foreign gene
expression (Fig. 2), at their authentic locus or elsewhere on
the viral genome and even in multiple copies.

Early barriers to application and
commercialization

Bacterial and yeast expression systems were up and running
at the time of the development of the BEV system. A
publication on the application of vaccinia virus as an
expression vector appeared in 1982 (Mackett et al., 1982).
These circumstances may have hampered the broad-scale

(a) (b)

Fig. 1. Electron micrographs of Sf21 insect cells infected with WT and recombinant AcMNPV. (a) The black arrow points at a
viral OB carrying ODV in the WT-infected cells. (b) The cells infected with a polyhedrin promoter-based expression vector lack
OBs and this characteristic is useful to select recombinant viruses. Fibrillar structures formed by the p10 protein are indicated
by a white arrow.

M. M. van Oers, G. P. Pijlman and J. M. Vlak
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introduction of yet another expression system, despite its
good properties and potential advantages. The commer-
cialization of insect-cell-produced IFN, although IFN was
in high demand at the time, was compromised by prior
investments in the development of this compound from a
bacterial source (Goeddel et al., 1980; Taniguchi et al.,
1980). ‘Unknown makes unbeloved’ and without trained
people that could work with this new system, it proved
difficult to implement this invertebrate system in many
laboratories, especially in the early years. Implementation
was also hindered because recombinant virus purification
required specific skills and commercial kits were not yet
available.

The use of the polh promoter for foreign gene expression
was patented by the inventors (Smith & Summers, 1984,
1988, 1989). The fact that licensing fees and royalties had to
be paid for any commercial use may have slowed down the
application of BEV technology, although this was offset to
a large extent by the free availability of the system for
research purposes. As an alternative, some research groups
and companies used the p10 locus and promoter to express
foreign genes. When using the p10 locus to insert foreign
genes, marker genes such as lacZ were often co-introduced
to be able to discriminate recombinant viral plaques (Vlak
et al., 1990). The p10 promoter was, for instance, used to
produce the classical swine fever virus (CSFV) E2 protein
(at the time still called E1) (Hulst et al., 1993), which was
later marketed as a subunit vaccine by Bayer (Table 3). The
classical swine fever marker vaccine currently on the
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Table 3. Overview of approved vaccines and therapies based on baculovirus expression technology

Product name Company Expressed product Purpose Use Year of release Reference

Porcilis Pesti MSD Animal Health E2 glycoprotein Subunit/marker vaccine against classical

swine fever

Pigs 1998 –

Bayovac CSF E2* Bayer Biologicals/Pfizer

Animal Health

E2 glycoprotein Subunit/marker vaccine against classical

swine fever

Pigs 2001 Hulst et al. (1993)

Circumvent PCVD MSD Animal Health Porcine circovirus ORF2 VLP vaccine against porcine circovirus type 2 Pigs 2005 –

Cervarix GlaxoSmithKline Human papillomavirus L1

protein (serotypes 16 and 18)

VLP-based vaccine against cervical cancer Girls 2007 Harper (2008)

CircoFLEX Ingelvac Porcine circovirus ORF2 VLP vaccine against porcine circovirus type 2 Pigs 2008 Desrosiers et al.

(2009)

Porcilis PCVD MSD Animal Health Porcine circovirus ORF2 VLP vaccine against porcine circovirus type 2 Pigs 2009 –

Provenge (sipuleucel-T) Dendreon PAP-GM-CSFd Immunotherapy against prostate cancer Men 2010 Kantoff et al. (2010)

Glybera UniQure AAV vector with lipoprotein

lipase transgene

Gene therapy against familial lipoprotein

lipase deficiency

Humans 2012 Haddley (2013)

Flublok Protein Sciences Influenza HA Annual trivalent flu vaccine Humans 2013 Cox (2009), Cox &

Hashimoto (2011),

Treanor et al. (2011)

*Bayovac CSF E2 vaccine has been discontinued.

DThe two porcine circovirus vaccines produced by MSD Animal Health are licensed in different geographical areas.

dProstatic acid phosphatase coupled to granulocyte–macrophage colony-stimulating factor.
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market is produced by MSD Animal Health (Porcilis Pesti)
and is also based on p10 promoter-driven expression of the
CSFV E2 sequence at the p10 locus. The polh and p10
promoter can also be used simultaneously for foreign gene
expression, which was first demonstrated by co-expressing
influenza neuraminidase (polh promoter) and haemagglu-
tinin (HA) (from an extra p10 promoter copy at the polh
locus) (Weyer & Possee, 1991).

The original patent on the BEV system has since expired,
facilitating commercial application of this expression
system by many more companies. Diagnostic applications
of recombinant proteins produced with the BEV system
should be less restricted now, unless the protein itself has
been patented. The principle of subunit (e.g. Flublok)- and
virus-like particle (VLP)-based vaccines (e.g. Cervarix) for
human use will become better known to both professionals
and the target public over time, making public acceptance
of future recombinant vaccines using baculovirus expres-
sion technology probably less difficult.

Development of baculovirus vectors

In the early years, a complication of baculovirus technology
was the low level of recombinant virus generated in the co-
transfection approach (typically 0.1–1 %). Therefore, time-
consuming purification of recombinant virus was needed,

requiring repeated rounds of plaque assays and with the
intrinsic danger of losing the foreign gene. A major
improvement came when a unique restriction site was
inserted at the polh locus, allowing linearization of the
genome (Kitts et al., 1990). A similar approach was also
developed for the p10 locus (Martens et al., 1995). This
advance reduced the infectivity of the parental viral DNA.
Circular recombinant viral genomes with restored infec-
tivity were generated upon recombination with a co-
transfected transfer vector. The percentage of recombinant
viruses increased to ¢30 % when using this method.
Through further engineering, a vector was constructed in
which an essential gene located downstream of the polh
locus (orf1629) was disrupted during linearization of the
viral DNA by restriction enzyme digestion. The genome
was only recircularized upon recombination with an appro-
priate transfer vector, thereby restoring the orf1629 gene,
leading to an infectious progeny virus. As a consequence,
this strategy dramatically reduced the background of WT
virus after co-transfection to ~2–3 % (Kitts & Possee,
1993).

In 1993, the ‘bacmid system’ was developed, which allowed
the generation of recombinant AcMNPV genomes in E. coli
(Luckow et al., 1993). This method made use of site-
specific recombination at the polh locus by using a bacterial
artificial chromosome (BAC) carrying the entire AcMNPV

(a)

Insect glycans Mammalian glycans

Asn Asn

Asn

Asn

Asn

Asn

Asn

Bee venom

glycoprotein

glycan structure

Symbols

Mannose

Galactose

Fucose

Sialic acid

N-acetylglucosamine

N-acetylgalactosamine

(d)

(e)

(f)

(g)

(b)

(c)

Fig. 3. Differences in N-glycan structures of glycoproteins in insect and mammalian cells. (a, b) The two major products of the
insect N-glycan-processing pathway, classified as paucimannose structures. (c) The most complex insect glycan confirmed by
MS and found in the bee venom. (d–g) Various examples of complex mammalian N-glycan structures. Data retrieved from
Harrison & Jarvis (2006).
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genome sequence. This development greatly simplified the
procedure of making recombinant baculoviruses. As the
generation and purification of recombinant viral genomes
was performed in bacterial cells, the up-and-ready recom-
binant genome (single genotype) could be used to transfect
insect cells in order to generate recombinant BVs. Bacmids
are now used widely, not only to generate expression
vectors, but also to generate viruses with gene knockouts
for functional studies or to delete undesired ORFs that may
reduce the quality of the recombinant protein (e.g. Ono
et al., 2012). Bacmid systems have also been developed for
an increasing number of other baculovirus species, including
BmNPV (Motohashi et al., 2005) and Spodoptera exigua
multiple nucleopolyhedrovirus (Pijlman et al., 2002). Major
advantages of the bacmid system are that the virus produced
is genetically well-defined and that the bacmid can be mutated/
adapted using methods developed for bacterial systems. The
use of the bacmid system for the production of proteins for
human applications may be limited to preclinical research
due to the presence of bacterial sequences and antibiotic
selection markers in the viral DNA, and the relative insta-
bility of bacmid-derived AcMNPV vectors in insect cells
(Pijlman et al., 2003a, see below). Therefore, BEVs used in
commercial production are still being made by classical
recombination with linearized vectors followed by several
rounds of plaque purification. A system that combines the
possibility of baculovirus genome modification provided by
a bacmid set-up with homologous recombination in insect
cells, thereby avoiding the bacterial sequences in the final
vector, is flashBAC (Hitchman et al., 2009). This method
also allows automated gene expression.

The BEV system has seen a new development in recent
years with the MultiBac system, which allows the synthesis
of multisubunit protein complexes using a single baculo-
virus vector (Berger et al., 2013). MultiBac technology can
be combined with the OmniBac transfer plasmid that can
be used universally to generate recombinant baculoviruses,
either by homologous recombination using linearized gen-
omes or by applying bacmid technology (Thimiri Govinda Raj
et al., 2014). Alternatives are multilocus baculovirus vectors, in
which large foreign genes can be inserted at several loci within
the baculovirus genome (Galibert et al., 2012; Kanai et al.,
2013). These systems have great potential for the manufacture
of complex VLPs and the development of multivalent vaccines.

Adaptations for improved glycoprotein expression

Insect cells are well suited for the expression of glycopro-
teins, and biologically active and immunogenic proteins
are often produced. Nevertheless, the levels of production
are normally lower for membrane-bound and secreted
proteins than for cytoplasmic recombinant proteins. In this
respect, it is important to realize that the baculovirus vector
encodes the protease pro-v-cathepsin, which accumulates in
the ER and may, upon activation by chitinase, interfere with
the integrity of recombinant glycoproteins (Hom et al.,
2002). When the corresponding v-cath gene is deleted from

the baculovirus genome, glycoproteins are less prone
to degradation. Moreover, simultaneous deletion of the
neighbouring chi-A gene, encoding chitinase, enables higher
production levels of recombinant glycoproteins (Hitchman
et al., 2010; Kaba et al., 2004). A likely explanation for the
latter observation is that massive accumulation of chitinase
in the ER may compromise the glycoprotein export machin-
ery (Thomas et al., 1998). Modified baculovirus vectors
from which chi-A or both chi-A and v-cath genes have been
deleted are available, and are recommended for recombinant
glycoprotein synthesis.

Glycoproteins produced in insects generally display more
uniform, but less complex N-glycans than mammals (for
extended reviews, see Harrison & Jarvis, 2006, 2007). Insect
N-glycans have terminal mannose residues, whilst mam-
malian N-glycans often have terminal sialic acid residues
and often show more antennal diversity (Fig. 3). These
differences in N-glycan processing may affect the biological
function of particular recombinant proteins of mammalian
origin produced in insect cells. Transformed insect cell lines
have been developed that express a combination of human
N-glycan processing enzymes to ‘humanize’ glycoprotein
processing in insect cells (Breitbach & Jarvis, 2001; Hollister
et al., 1998; Jarvis & Finn, 1996; Mabashi-Asazuma et al.,
2013; Okada et al., 2010). Another approach is SweetBac, in
which glycoprotein processing enzymes are co-expressed
with the gene of interest from the same baculovirus
backbone using the above-mentioned MultiBac vectors
(Palmberger et al., 2012). Insect cell lines may add core
1,3-a-fucose during N-glycan processing (Long et al., 2006;
Tomiya et al., 2004). In nature, 1,3-a-fucose forms the main
allergic component in several insect venoms (Fig. 3c) and plant
allergens (Altmann, 2007). Two recent papers have addressed
this issue by developing baculovirus vectors that express a bac-
terial enzyme that reduces the amount of the fucose precursor
(Mabashi-Asazuma et al., 2014; Palmberger et al., 2014).

Initial attempts have also been made to enhance the levels
of functional glycoprotein production by co-expressing
human chaperones that can assist in folding. Whilst this
may not be needed for the majority of the proteins, it may
be helpful for proteins with complex structures, such as
those with multiple transmembrane domains (e.g. Tate
et al., 1999). However, the levels of improvement achieved
so far are limited and the approach was only tested for a
few proteins. In-depth knowledge on protein folding in
insect cells as compared with mammalian cells is required
to enable further advances.

Insect cells infected with baculoviruses that encode human
BCL2 (Alnemri et al., 1992) or polydnavirus ankyrin (Fath-
Goodin et al., 2006) – both proteins with anti-apoptotic
properties – remain viable longer after infection. As a con-
sequence, co-expressing these factors with a gene of interest
may enhance the final level of the product. A similar effect
on extended cell viability and an increased yield of secreted
recombinant protein was observed when co-expressing the
insect translation initiation factor eIF4E (Teng et al., 2013).

M. M. van Oers, G. P. Pijlman and J. M. Vlak
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This mRNA cap-binding protein is known as the rate-
limiting factor in translation initiation and is downregulated
during infection (van Oers et al., 2001). Overexpression of
eIF4E may indirectly promote expression of a broad range of
cellular proteins that assist in protein production and cell
maintenance.

Biotechnological aspects

Scale-up of the infected cell culture is required in order to
produce sufficient quantities of recombinant proteins. For
small- to medium-scale production, adherent insect cells
can be cultivated in large T-flasks, cell stacks or roller
bottles. However, suspension cultures are preferred when it
comes to large culture volumes. There are numerous systems
to grow insect cells in suspension, ranging from shaker flasks
and single-use wave bags to stirred tank reactors, which are
usually stainless steel fermenters of up to a few thousands
litres. Insect cells are shear sensitive (Tramper et al., 1986),
but this problem has been largely solved by using appro-
priate media. Single-use disposable technology is used more
and more, and is particularly useful for medium-scale
production or as an intermediate step before large-scale
production. Disposable technology has the advantage of a
shorter downtime between runs because cleaning/steriliza-
tion of the fermenter is no longer required (Shukla &
Gottschalk, 2013). Baculovirus expression technology does
not require equipment that is vastly different from that
already used in the pharmaceutical industry. Interestingly, it
has recently been shown that redundant or obsolete infra-
structure in the pharmaceutical industry can be modified in
a short time frame (,3 months) to serve emergency vaccine
production with the BEV system (B. Buckland and others,
unpublished results).

For suspension cultures, the insect cells are cultivated in
serum-free media specifically designed for non-attached
cell growth (Weiss et al., 1995). Lepidopteran cell lines
derived from the fall army worm (Spodoptera frugiperda;
Sf21 and its clone Sf9) and the cabbage looper [Trichoplusia
ni; High Five (Hi5)] are used commercially. Most com-
panies create their own proprietary media and use a
selected expression clone of a cell line suitable for their
particular product. For example, a Sf9-derived cell clone
designated expresSF+ is used for the production of Flublok
(Protein Sciences) and Glybera (UniQure). GlaxoSmithKline
produces its cervical cancer vaccine in the T. ni Hi5-derived
Rix4446 cell line and MSD Animal Health uses Sf-21-CB cells
to produce their veterinary vaccine Porcilis Pesti. Whilst
many other lepidopteran cell lines have been generated over
the past 30–40 years (van Oers & Lynn, 2010), most are only
suited for baculoviruses other than the type species
AcMNPV. The novel cell line BTI-Tnao38 derived from T.
ni (Hashimoto et al., 2012) does support efficient AcMNPV
replication associated with high protein production levels
and these cells may find further applications in the future.

Large-scale commercial production with baculovirus
vectors is carried out in batch mode and is preceded by a

number of steps to scale-up the required number of cells.
An important factor that determines the efficiency of
infection is the cell density (Bernal et al., 2009). In recent
years, production at high cell densities, resulting in higher
final yields per volume, has been demonstrated successfully
by carefully controlling metabolic fluxes (Carinhas et al.,
2010). In general, the batch mode production method is
reproducible, uses manageable volumes of seed virus and
has a production end point that is well defined. Fed-batch
systems are not often used for baculovirus expression, but
they may support higher cell densities and higher yields
(Meghrous et al., 2009). Continuous insect cell bioreactors
can be operated to produce recombinant proteins, using a
set-up in which a cell growth reactor feeds fresh cells into
the baculovirus infection reactor (van Lier et al., 1990).
However, this system has not been adopted by the industry,
mainly due to the lytic nature of the baculovirus infection
and the reproducible, dramatic drop in production that is
associated with extensive passaging of the recombinant
baculovirus.

It has been well documented that a high m.o.i. or pro-
longed passage of baculovirus promotes the accumulation
of defective interfering (DI) particles (Kool et al., 1991; Lee
& Krell, 1992). DI particles replicate at the expense of the
intact baculovirus, and cause a reduction in the amount of
infectious virus and protein production losses – a pheno-
menon that is also known as the ‘passage effect’. Infection
at low m.o.i. and the use of low-passage seed stocks may
largely prevent this phenomenon, but DI particles are
rapidly generated within a single virus passage and their
negative effects sometimes appear in as little as five to 10
passages (Pijlman et al., 2001). Recombinant baculovirus
genomes may also become unstable, resulting in the selec-
tive deletion of the transgene upon replication in insect
cells. The classical way of generating recombinant baculo-
viruses via homologous recombination in insect cells is
sometimes associated with transgene loss, but the instab-
ility problem is most apparent with the highly successful
bacmid technology. In recombinant bacmids, the transgene
is cloned adjacent to a highly unstable mini-F replicon
element and loss of production can happen very fast
(Pijlman et al., 2003a). Several technological solutions have
been shown to delay DI particle production in small-scale
laboratory settings (Pijlman et al., 2002, 2004, 2006), but so
far none of these have been translated into industrial practice.

Quality control, safety aspects and legislation

Before any product can go to the market and into clinical
programmes, many (pre-)clinical tests need to be per-
formed, followed by in-depth evaluation by the responsible
authorities, such as the European Medicines Agency and
US Food and Drug Administration. The quality control
methods and safety aspects related to clinical usage of
materials produced in insect cells with baculovirus vectors
have recently been reviewed (Roldão et al., 2011). As
outlined by Roldão et al. (2011), advanced quality control
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methods are required for the application of these materials
as vaccines and therapeutics in order to guarantee safety,
stability and constant efficacy over batches.

An important consideration for vaccines and therapeutics
for human medical use is that the co-produced BV particles
need to be cleared away during downstream processing,
e.g. by taking advantage of differences in charge between
baculoviruses and VLPs or AAV vectors. As an alternative
method to overcome the problem of heavy BV contam-
ination, proof of principle has been shown for a BAC-FREE
system, in which a gene essential for baculovirus virion (BV
and ODV) formation is deleted from the viral genome
(Marek et al., 2011). This gene, vp80, is then offered by a
trans-complementing cell line to produce a seed stock.
Recombinant protein is produced when this seed is then
used to infect normal Sf9/Hi5 cells, whilst no baculovirus
particles are formed. The vp80 trans-complementation
system needs further development, followed by its evalu-
ation for clinically interesting products such as VLPs and
AAV vectors; however, if optimized, costs for downstream
processing could be reduced considerably.

Specific concerns relate to the possible presence of (retro-)
transposons and retrovirus sequences (Menzel & Rohrmann,
2008), and other, persistent, insect viruses as exemplified
by the discovery of alphanodaviruses in T. ni Hi5 and
Helicoverpa zea Hz-AM1 cells (Bai et al., 2011), and the
recent discovery of a novel, insect-specific rhabdovirus in Sf9
cells (Ma et al., 2014). The presence of insect-specific viruses
in established insect cell lines appears to be quite common,
and becomes increasingly clear with more sensitive dia-
gnostics and the wide application of next-generation
sequencing technologies. For example, Drosophila S2-GMR
cells have been shown to be persistently infected with five
RNA viruses belonging to four different virus families (Wu
et al., 2010). Although these insect-specific, persistent viruses
cannot replicate in vertebrate cells, and thus are unlikely to be
harmful to humans and other vertebrates, they should be
removed with conventional purification systems. As a con-
sequence, there is a demand for new, virus-free insect cell lines.

Rules for the use of baculoviruses to deliver genes into
humans for gene therapy or as agents for cancer treatment
(see below) have not yet been formulated. Current regu-
lations for proteins produced with BEVs may apply for
gene therapy vectors as well, but there are additional safety
aspects that need to be evaluated. These include risks of
sequence integration, transposon transfer and immuno-
logical responses to baculovirus particles (reviewed by Lesch
et al., 2011a). To circumvent the activation of the comple-
ment system, chemical compounds or soluble complement
receptors can be added during transduction (Hofmann &
Strauss, 1998; Hofmann et al., 1999). A further innovation
has been the development of ‘stealth’ baculoviruses that avoid
the vertebrate complement system by displaying complement-
degrading proteins on the virus surface (Kaikkonen et al.,
2010). The current production procedures may not always
be appropriate to produce baculovirus-based gene therapy

vectors. An example is the requirement of filter-sterilization
for medical products through filters with 0.2 mm pores – a
pore size that interferes with the integrity of baculovirus
particles. The international community will need to critically
evaluate the existing procedures, and may have to develop and
agree on new quality control methods and standards to make
this application feasible without compromising on safety.

Comparison of the BEV system with other
heterologous expression systems

The performance of various expression systems for pro-
ducing recombinant proteins for biopharmaceuticals has
recently been reviewed (Assenberg et al., 2013). The main
conclusion from that review is that all three expression
systems (E. coli systems, baculovirus technology, and
transient and stable expression in mammalian cells) have
seen major improvements over recent years allowing higher
success rates, increased protein yields and better quality,
over shorter time lines. A recent overview of various insect
cell expression technologies, including Drosophila S2 cells, is
also available (Kollewe & Vilcinskas, 2013). The system of
choice of course depends on the characteristics and require-
ments of the desired product, but will also be influenced by
the in-house experience of the researchers. Table 2 shows
how the various expression systems compare.

Overview of current applications of BEV
technology

The applications of recombinant baculoviruses have recently
been reviewed (Airenne et al., 2013), and are very diverse
and almost limitless. The applications can be divided into
four categories: the synthesis of single or multisubunit
recombinant proteins, the production of baculovirus
particles as antigen carriers, the manufacture of viral vectors
for gene therapy and the production of baculovirus-based
gene delivery vehicles for mammalian cells (Fig. 4).

Use of BEVs for the synthesis of single or multipartite
recombinant proteins

This first category (Fig. 4a) consists of recombinant proteins
used for enzymic analysis, crystallography, diagnostics,
subunit vaccines and VLPs, biosensors and protein micro-
arrays. The insect-cell-produced vaccines approved for
veterinary or human clinical use are summarized in Table
3, and many more are in (pre-)clinical trials. Table 3 also
includes details of a protein applied ex vivo to cure prostate
cancer (Provenge). The subunit marker vaccine against
classical swine fever contains a secreted form of the CSFV
glycoprotein E2. The vaccines against porcine circovirus are
based on VLPs that are produced upon expression of the
porcine circovirus ORF2. The human papillomavirus L1
capsid protein also forms VLPs when expressed in insect
cells. VLPs of human papillomavirus serotypes 16 and 18
form the major component of a vaccine against cervical
cancer (Cervarix). In the influenza subunit vaccine Flublok,
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the HA protein is present in the form of trimers. These HA

trimers further assemble into ‘rosettes’ (Holtz et al., 2003).

HA rosettes derived from three different influenza viruses

are present in this trivalent seasonal flu vaccine, which

is updated annually, analogous to the classical influenza

vaccine. More complex VLPs consisting of several proteins

can also be produced in insect cells, of which the best-known

examples are probably bluetongue and rotavirus VLPs (e.g.

Pérez de Diego et al., 2011; and reviews by Palomares &

Ramı́res, 2009; Vicente et al., 2011). A more recent develop-

ment is the synthesis of enveloped VLP-based vaccine

candidates using BEVs. Examples are recently developed

prototype vaccines against chikungunya virus and influenza

virus (Metz et al., 2013; Smith et al., 2013). Other complex

enveloped VLP-based vaccines are under development
(Fernandes et al., 2013; Metz & Pijlman, 2011).

As insect cells are derived from poikilothermic organisms,
they have clear potential for the expression of genes from
other cold-blooded animals such as fish and amphibians
or their pathogens, as recently demonstrated. Salmonid
alphavirus structural proteins are only correctly processed
to form VLPs by reducing the temperature to 12 uC during
the protein production phase (Metz et al., 2011; Hikke et al.,
2014). Recent data have also shown that correct folding
of influenza HA occurs over a much larger temperature
range in Sf9 insect cells than in mammalian cells (Li, 2014),
which is also a reflection of the poikilothermic nature of the
cells.

(a) (Glyco-)proteins, subunits and (e)VLPs

eVLPs

BV

VLPs

subunits

ODVs

triple infection
(rep, cap, GOI)

AAV

Viral vectors

BVs

Gene delivery

BV

BV

GP64::antigen

Surface display, antigen carrier

MC

(glyco-)
proteins

(c) (d)

(b)

Fig. 4. Overview of the various applications of the baculovirus expression system. (a) Baculovirus BVs are used to produce
foreign (glyco-)proteins in insect cells. The recombinant proteins may be synthesized as subunits, which may remain intracellular
or in the case of glycoproteins will be transported to the cell surface or even be secreted. Alternatively, the recombinant proteins
may form VLPs or enveloped, secreted VLPs (eVLPs). Protein subunits as well as (e)VLPs may be used as vaccines. (b) When
proteins are fused to the BV surface protein GP64 as a carrier, they are transported to the cell surface and become
incorporated in the BV particles upon budding. This is called baculovirus surface display. (c) Baculovirus vectors can also be
used to produce viral vectors such as AAV for gene therapy. Here, the triple baculovirus system is displayed. Two baculovirus
vectors induce the expression of AAV rep and cap genes, respectively, needed to amplify and package the transgene DNA
construct encoded by the third baculovirus. GOI, gene of interest. (d) BVs carrying a gene of interest under a promoter active in
mammalian cells (MC) are produced in insect cells and used as gene delivery vectors. The nucleus of the insect cell contains
the occlusion-derived form of the virus (ODV), which is not occluded in the absence of the polyhedrin protein. (The various
components are not to scale.)
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Baculovirus particles as antigen carriers

The production of baculovirus particles as antigen carriers
is achieved by coupling (glyco-)proteins or epitopes thereof
to the BV envelope protein GP64 by means of gene fusion
(Fig. 4b). Thus, foreign glycoproteins/epitopes will be
routed efficiently to the cell membrane to be displayed on
the surface of infected cells and on BV particles (Boublik
et al., 1995; Grabherr et al., 1997). An extra copy of the
gp64 ORF cloned downstream of the polh promoter is used
for these modifications to obtain high expression levels and
at the same time avoid loss of BV infectivity. Alternatively,
heterologous sequences may be coupled to other surface
proteins such as influenza HA or the vesicular stomatitis
virus G protein (reviewed by Grabherr and Ernst, 2010).
Recombinant BVs or cell extracts made with this surface
display technique have been used in a variety of applica-
tions, including functional studies of glycoproteins, drug
screening and development of vaccine candidates (see, e.g.
Kaba et al., 2003; Mäkelä & Oker-Blom, 2008). This
strategy may also be used to target baculovirus-based gene
delivery vectors (see below) by coupling peptides specific
for target cell receptors to viral surface proteins.

Production of heterologous viral vectors in insect cells

The BEV system finds an important application in the
production of other viral vectors (Fig. 4c), such as AAV
vectors (Galibert & Merten, 2011; Kotin, 2011; Urabe et al.,
2002). The baculovirus system provides a scalable altern-
ative to transfection-based human cell systems to produce
AAV vectors for gene therapy applications. Originally, three
different recombinant baculoviruses were used to infect
insect cells: one with the transgene flanked by inverted
terminal repeats, one providing the capsid genes to package
the vector DNA and one providing the rep genes needed for
production of the vector DNA (Urabe et al., 2002). Over time,
the number of baculoviruses needed has been reduced, first to
two baculoviruses (Smith et al., 2009) and, more recently, one
with the Monobac system (Galibert et al., 2012), where
different loci in the baculovirus genome are used simulta-
neously to express foreign genes. The first approved AAV-
based gene therapy vector produced in insect cells (Table 3)
aims at the treatment of the rare recessive genetic disorder
‘lipoprotein lipase deficiency’ (Glybera) (Haddley, 2013).

Baculovirus-based gene delivery vehicles for
mammalian cells

AcMNPV has the ability to enter mammalian cells by a
process called transduction (Hofmann et al., 1995; van Loo
et al., 2001). By replacing the polyhedrin promoter with
a mammalian (viral) promoter, baculovirus vectors can be
used to efficiently express genes in mammalian cells
(Fig. 4d) (e.g. BacMam vectors; Condreay et al., 1999).
The baculoviruses do not replicate in these cells and the
genomes appear as episomal DNA, although occasional
integration of baculoviral DNA sequences has been
reported (Merrihew et al., 2001). These vectors may be

further modified to display mammalian receptor-binding
peptides on the surface of BVs (as indicated above) or
to incorporate complement-inhibiting factors in the BV
envelope (Kaikkonen et al., 2010). A further benefit is the
possibility to insert large stretches of foreign DNA, in
multiple segments, if necessary, into the viral genome. The
use of gene delivery vectors finds applications, for instance,
in high-throughput screening of gene functions (human
glycoprotein project) and the testing of drugs, and may in
the future be used for treatment of human pathologies,
such as prostate cancer (Swift et al., 2013) and genetic
eye diseases (Kinnunen et al., 2009), or assist in bone or
wound healing (Chuang et al., 2007; Lin et al., 2010) or
transplantation therapies (Murguı́a-Meca et al., 2011). In
addition, baculoviruses are being used to deliver lentivirus
replicons into mammalian cells (Lesch et al., 2008, 2011a).

Views on future developments

The development of BEV technology over time is a typical
example of new technology entering the scene, with a lag
time followed by huge interest, and finally stabilization and
incorporation in common laboratory and industrial prac-
tice. However, as with all platform technologies, mainten-
ance of the system is not enough and new avenues for
improvement need to be explored. Apart for several aspects
mentioned above, such as the development of a baculovirus
virion-free system to simplify downstream processing and
aspects dealing with safety and legislation, the avenues for
which we see most potential for optimized expression
vectors are minimizing the size of the baculovirus genome,
reducing genome instability and overcoming protein-
specific hurdles.

Minimized baculovirus genomes

Proteomic analysis of BVs versus ODVs has indicated quite
a few ODV-specific proteins, such as the per os infectivity
factors (Hou et al., 2013); these ODV-specific proteins are,
in principle, dispensable for BV production and over-
expression of recombinant proteins. Genes involved in OB
formation (in addition to polh), such as the pp32 gene
encoding the OB calyx protein, are also dispensable for
replication and transmission in insect cells. The same holds
true for the aforementioned genes required for the release of
OBs from the insect body (chi-A, v-cath and p10). In
addition, genes involved in the manipulation of insect host
development and behaviour, such as egt and ptp (Cory et al.,
2002; Li & Guarino, 2008; van Houte et al., 2012), can
probably be omitted in the context of protein expression in
cultured cells. In the case of AcMNPV, an estimated 40 genes
could be eliminated without affecting heterologous protein
synthesis and levels. Removal of unnecessary viral genes may
allow more space for multiple gene insertions, increase
production yields by saving energy, and improve product
quality and safety. Removal of unnecessary or even
deleterious viral genes has been done so far by making
sequential gene deletions from the AcMNPV bacmid, e.g. as
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described for a vector without chi-A, v-cath and p10
(Galibert et al., 2011), which made use of an antibiotic
marker gene that was removed subsequently by a modified
Cre–lox recombination strategy (Suzuki et al., 2007) after
each gene inactivation. However, sequential removal of viral
genes is a technical challenge and may affect the transcrip-
tional regulation of neighbouring genes or result in
increased promoter densities, further disrupting transcrip-
tion regulation. Alternatively, a ‘building block’ principle
may be followed, only including those genes needed for
baculovirus replication, BV formation, cell-to-cell transmis-
sion and very late protein synthesis. Such a method seems
feasible as baculoviruses are generally organized as a
sequence of gene cassettes providing single unspliced
transcripts, although the presence of co-terminal 59 and 39

ends complicates matters (Friesen & Miller, 1985). Using
synthetic biology methodologies, baculoviruses may be
redesigned and produced synthetically to contain only the
essential genes for high-level protein synthesis
(Vijayachandran et al., 2013). The latter is also a highly
challenging approach as timing and levels of expression of
the different genes need to be controlled carefully, but the
outlook is very inviting. Both approaches, i.e. sequential
deletion and synthetic design, are attractive avenues. In
minimal genomes, the DNA sequence motifs required to
nucleate viral genome packaging need to be incorporated in
order to obtain infectious BVs. Therefore, more fun-
damental knowledge is needed on baculovirus packaging
signals and the proteins required for this process, which are
only now beginning to be elucidated (Marek et al., 2013).

Reducing genome instability

Genome instability is an intrinsic property of the WT virus
as soon as it is passaged in cell culture. A possible reason is
that, in the expression system, AcMNPV replicates in a cell
line out of its original tissue/organ context (Pijlman et al.,
2003b), which prompts the search for cell lines that better
respond to the needs of the system. The fact that instability
is associated with the loss of large DNA segments from the
viral DNA (Kool et al., 1991), as well as with the accumu-
lation of DNA fragments carrying origins of replication (Lee
& Krell, 1994), suggests that replication and/or packaging
controls are affected. This may have to do with the structure
of the viral DNA itself, its replication mechanism and/or
signals that are required for orderly packaging of the DNA
into virions. As mentioned above, several modifications to
expression vectors have been shown to delay DI particle
production. In particular, the deletion of the non-homo-
logous region origin of DNA replication seems a promising
approach, which has been shown to improve overall genome
stability (Pijlman et al., 2002, 2003b). The expression of the
gene of interest from the same transcript as the expression of
GP64, which is essential for BV formation and infectivity,
has been shown to prevent the loss of the heterologous gene
(Pijlman et al., 2006). The next step would be to test both
approaches in large-scale bioreactors and translate these into
industrial practice.

Protein-specific hurdles

A further challenge lies in the expression of the proteins
themselves. Although a plethora of recombinant proteins
have been expressed successfully, some are poorly made
or need advanced solutions, such as the surface display
technique (Kaba et al., 2002). Sometimes it is the consequence
of protein toxicity, but most of the time it seems to be a
protein folding/transport issue. In WT-infected cells, there is
massive transport of polyhedrin and p10 to the nucleus of
infected insect cells – proteins that are not glycosylated. In
most cases, however, recombinant proteins require routeing
to the ER and Golgi network to be glycosylated. Production
levels of glycoproteins are somewhat erratic and certainly not
predictable. We know very little about how proteins are
transported and folded in insect cells, particularly glycopro-
teins, and further insight would be very beneficial for proper
and authentic production of these proteins. With such
knowledge, we may be able to tailor the quality of expression
by co-expressing specific chaperones of vertebrate origin –
something attempted so far mainly on a trial-and-error basis.

Baculovirus publications following the
development of the BEV system

The impact of the BEV system during its 30 year existence is
clearly visible from bibliographical data (Fig. 5). A gradual
increase is seen in the number of scientific papers dealing
with nucleopolyhedrovirus-related research until the mid-
1980s. After the invention of BEV technology in 1983, a
steady increase in nucleopolyhedrovirus-related literature
can be observed, followed by a peak in the late 1990s, with a
maximum of 794 papers published in 1997. After 1997, a
gradual decrease in the number of papers published per year
can be seen, but it is still averaging y500 papers in recent
years. A total of 14 867 papers published between 1950 and
the end of 2013 were retrieved from the Scopus database (see
legend of Fig. 5 for search criteria). In the bibliographical
analysis it is difficult to separate fundamental studies on
nucleopolyhedroviruses from those that apply baculoviruses
to express foreign genes (Fig. 5, red curve) and it may also
not be appropriate to do so. Baculovirus expression
technology would not have existed without preceding
fundamental research and would not have reached its
current status as an easy-to-use general protein production
platform without concurrently obtaining in-depth know-
ledge on the vector and insect cells. However, to gain an idea
how many papers deal with baculovirus expression techno-
logy in particular, the search term ‘baculovirus expression’
was used to create the blue curve in Fig. 5. The search
returned a total of 8544 scientific papers with a similar
profile as the red curve. This graph probably underestimates
the use of the expression system, because many scientists use
this system in industrial organizations and they may not be
encouraged or allowed to publish their data in the scientific
literature. A search amongst patents returned .2300 patent
applications, claiming recombinant expression using bacu-
lovirus vectors, of which 1500 also included the use of insect
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cells. For more insight into patents dealing with baculovirus
expression technology, see reviews by Hitchman et al. (2009)
and Lin et al. (2011).

Conclusions

Thirty years after its inception, the baculovirus–insect cell
expression system and its associated technologies form a
mainstream platform for the production of recombi-
nant proteins for fundamental and applied science. The
thousands of proteins that have been produced successfully
with this system provide convincing support that the BEV
system is very useful for academia and industry alike, and
this is underscored by the commercialization of veterinary
and human vaccines. Further reasons for the success of this
technology have been the attitude of the baculovirus
community to make new insights and innovative materials
readily available to whoever is interested, and the inherent
safety of the technology for researchers, producers and
consumers alike. In conclusion, there is a lot to celebrate
on the occasion of the thirtieth anniversary of the baculo-
virus expression system. However, this review should also
be seen as encouragement to take this system further into

the next decades by overcoming the remaining challenges,
e.g. to optimize BEV genome composition, to improve
genome stability in order to guarantee product quality over
batches and to simplify downstream processing without
losing safety. This will allow the baculovirus expression
system to become the system of choice for many applica-
tions based on its convenience, and on the yield, quality
and safety of the products produced.
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