1887

Abstract

Our previous studies indicated that hepatitis E virus (HEV) forms membrane-associated particles in the cytoplasm, most likely by budding into intracellular vesicles, and requires the multivesicular body (MVB) pathway to release virus particles, and the released HEV particles with a lipid membrane retain the -Golgi network protein 2 on their surface. To examine whether HEV utilizes the exosomal pathway to release the virus particles, we analysed whether the virion release from PLC/PRF/5 cells infected with genotype 3 HEV (strain JE03-1760F) is affected by treatment with bafilomycin A1 or GW4869, or by the introduction of a small interfering RNA (siRNA) against Rab27A or Hrs. The extracellular HEV RNA titre was increased by treatment with bafilomycin A1, but was decreased by treatment with GW4869. The relative levels of virus particles released from cells depleted of Rab27A or Hrs were decreased to 16.1 and 11.5 %, respectively, of that released from cells transfected with negative control siRNA. Electron microscopic observations revealed the presence of membrane-associated virus-like particles with a diameter of approximately 50 nm within the MVB, which possessed internal vesicles in infected cells. Immunoelectron microscopy showed positive immunogold staining for the HEV ORF2 protein on the intraluminal vesicles within the MVB. Additionally, immunofluorescence analysis indicated the triple co-localization of the ORF2, ORF3 and CD63 proteins in the cytoplasm, as specific loculated signals, supporting the presence of membrane-associated HEV particles within the MVB. These findings indicate that membrane-associated HEV particles are released together with internal vesicles through MVBs by the cellular exosomal pathway.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066910-0
2014-10-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2166.html?itemId=/content/journal/jgv/10.1099/vir.0.066910-0&mimeType=html&fmt=ahah

References

  1. Agrawal S., Gupta D., Panda S. K.. ( 2001;). The 3′ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA-dependent RNA polymerase (RdRp). . Virology 282:, 87–101. [CrossRef][PubMed]
    [Google Scholar]
  2. Alvarez-Erviti L., Seow Y., Schapira A. H., Gardiner C., Sargent I. L., Wood M. J., Cooper J. M.. ( 2011;). Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. . Neurobiol Dis 42:, 360–367. [CrossRef][PubMed]
    [Google Scholar]
  3. Balayan M. S., Andjaparidze A. G., Savinskaya S. S., Ketiladze E. S., Braginsky D. M., Savinov A. P., Poleschuk V. F.. ( 1983;). Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. . Intervirology 20:, 23–31. [CrossRef][PubMed]
    [Google Scholar]
  4. Bradley D. W.. ( 1990;). Enterically-transmitted non-A, non-B hepatitis. . Br Med Bull 46:, 442–461.[PubMed]
    [Google Scholar]
  5. Chandra V., Taneja S., Kalia M., Jameel S.. ( 2008;). Molecular biology and pathogenesis of hepatitis E virus. . J Biosci 33:, 451–464. [CrossRef][PubMed]
    [Google Scholar]
  6. Colson P., Borentain P., Queyriaux B., Kaba M., Moal V., Gallian P., Heyries L., Raoult D., Gerolami R.. ( 2010;). Pig liver sausage as a source of hepatitis E virus transmission to humans. . J Infect Dis 202:, 825–834. [CrossRef][PubMed]
    [Google Scholar]
  7. Crump C. M., Yates C., Minson T.. ( 2007;). Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. . J Virol 81:, 7380–7387. [CrossRef][PubMed]
    [Google Scholar]
  8. Dalton H. R., Bendall R., Ijaz S., Banks M.. ( 2008;). Hepatitis E: an emerging infection in developed countries. . Lancet Infect Dis 8:, 698–709. [CrossRef][PubMed]
    [Google Scholar]
  9. Demirov D. G., Ono A., Orenstein J. M., Freed E. O.. ( 2002;). Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. . Proc Natl Acad Sci U S A 99:, 955–960. [CrossRef][PubMed]
    [Google Scholar]
  10. Emerson S. U., Purcell R. H.. ( 2007;). Hepatitis E virus. . In Fields Virology, , 5th edn., pp. 3047–3058. Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E... Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  11. Emerson S. U., Nguyen H. T., Torian U., Burke D., Engle R., Purcell R. H.. ( 2010;). Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. . J Virol 84:, 9059–9069. [CrossRef][PubMed]
    [Google Scholar]
  12. Escola J. M., Kleijmeer M. J., Stoorvogel W., Griffith J. M., Yoshie O., Geuze H. J.. ( 1998;). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. . J Biol Chem 273:, 20121–20127. [CrossRef][PubMed]
    [Google Scholar]
  13. Feng Z., Hensley L., McKnight K. L., Hu F., Madden V., Ping L., Jeong S. H., Walker C., Lanford R. E., Lemon S. M.. ( 2013;). A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. . Nature 496:, 367–371. [CrossRef][PubMed]
    [Google Scholar]
  14. Fraile-Ramos A., Pelchen-Matthews A., Risco C., Rejas M. T., Emery V. C., Hassan-Walker A. F., Esteban M., Marsh M.. ( 2007;). The ESCRT machinery is not required for human cytomegalovirus envelopment. . Cell Microbiol 9:, 2955–2967. [CrossRef][PubMed]
    [Google Scholar]
  15. Garrus J. E., von Schwedler U. K., Pornillos O. W., Morham S. G., Zavitz K. H., Wang H. E., Wettstein D. A., Stray K. M., Côté M.. & other authors ( 2001;). Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. . Cell 107:, 55–65. [CrossRef][PubMed]
    [Google Scholar]
  16. Graff J., Torian U., Nguyen H., Emerson S. U.. ( 2006;). A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. . J Virol 80:, 5919–5926. [CrossRef][PubMed]
    [Google Scholar]
  17. Hartlieb B., Weissenhorn W.. ( 2006;). Filovirus assembly and budding. . Virology 344:, 64–70. [CrossRef][PubMed]
    [Google Scholar]
  18. Ichiyama K., Yamada K., Tanaka T., Nagashima S., Jirintai, Takahashi M., Okamoto H.. ( 2009;). Determination of the 5′-terminal sequence of subgenomic RNA of hepatitis E virus strains in cultured cells. . Arch Virol 154:, 1945–1951. [CrossRef][PubMed]
    [Google Scholar]
  19. Inal J. M., Jorfi S.. ( 2013;). Coxsackievirus B transmission and possible new roles for extracellular vesicles. . Biochem Soc Trans 41:, 299–302. [CrossRef][PubMed]
    [Google Scholar]
  20. Jayakar H. R., Jeetendra E., Whitt M. A.. ( 2004;). Rhabdovirus assembly and budding. . Virus Res 106:, 117–132. [CrossRef][PubMed]
    [Google Scholar]
  21. Jirintai S., Tanggis, Mulyanto, Suparyatmo J. B., Takahashi M., Kobayashi T., Nagashima S., Nishizawa T., Okamoto H.. ( 2014;). Rat hepatitis E virus derived from wild rats (Rattus rattus) propagates efficiently in human hepatoma cell lines. . Virus Res 185:, 92–102. [CrossRef][PubMed]
    [Google Scholar]
  22. Kabrane-Lazizi Y., Meng X. J., Purcell R. H., Emerson S. U.. ( 1999;). Evidence that the genomic RNA of hepatitis E virus is capped. . J Virol 73:, 8848–8850.[PubMed]
    [Google Scholar]
  23. Koonin E. V., Gorbalenya A. E., Purdy M. A., Rozanov M. N., Reyes G. R., Bradley D. W.. ( 1992;). Computer-assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. . Proc Natl Acad Sci U S A 89:, 8259–8263. [CrossRef][PubMed]
    [Google Scholar]
  24. Kosaka N., Iguchi H., Yoshioka Y., Takeshita F., Matsuki Y., Ochiya T.. ( 2010;). Secretory mechanisms and intercellular transfer of microRNAs in living cells. . J Biol Chem 285:, 17442–17452. [CrossRef][PubMed]
    [Google Scholar]
  25. Lorenzo F. R., Tanaka T., Takahashi H., Ichiyama K., Hoshino Y., Yamada K., Inoue J., Takahashi M., Okamoto H.. ( 2008;). Mutational events during the primary propagation and consecutive passages of hepatitis E virus strain JE03-1760F in cell culture. . Virus Res 137:, 86–96. [CrossRef][PubMed]
    [Google Scholar]
  26. Martin-Serrano J., Yaravoy A., Perez-Caballero D., Bieniasz P. D.. ( 2003;). Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. . Proc Natl Acad Sci U S A 100:, 12414–12419. [CrossRef][PubMed]
    [Google Scholar]
  27. Meng X. J.. ( 2013;). Zoonotic and foodborne transmission of hepatitis E virus. . Semin Liver Dis 33:, 41–49. [CrossRef][PubMed]
    [Google Scholar]
  28. Mori Y., Koike M., Moriishi E., Kawabata A., Tang H., Oyaizu H., Uchiyama Y., Yamanishi K.. ( 2008;). Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. . Traffic 9:, 1728–1742. [CrossRef][PubMed]
    [Google Scholar]
  29. Nagashima S., Takahashi M., Jirintai S., Tanaka T., Nishizawa T., Yasuda J., Okamoto H.. ( 2011a;). Tumour susceptibility gene 101 and the vacuolar protein sorting pathway are required for the release of hepatitis E virions. . J Gen Virol 92:, 2838–2848. [CrossRef][PubMed]
    [Google Scholar]
  30. Nagashima S., Takahashi M., Jirintai, Tanaka T., Yamada K., Nishizawa T., Okamoto H.. ( 2011b;). A PSAP motif in the ORF3 protein of hepatitis E virus is necessary for virion release from infected cells. . J Gen Virol 92:, 269–278. [CrossRef][PubMed]
    [Google Scholar]
  31. Nagashima S., Takahashi M., Jirintai S., Tanggis, Kobayashi T., Nishizawa T., Okamoto H.. ( 2014;). The membrane on the surface of hepatitis E virus particles is derived from the intracellular membrane and contains trans-Golgi network protein 2. . Arch Virol 159:, 979–991. [CrossRef][PubMed]
    [Google Scholar]
  32. Okamoto H.. ( 2007;). Genetic variability and evolution of hepatitis E virus. . Virus Res 127:, 216–228. [CrossRef][PubMed]
    [Google Scholar]
  33. Ostrowski M., Carmo N. B., Krumeich S., Fanget I., Raposo G., Savina A., Moita C. F., Schauer K., Hume A. N.. & other authors ( 2010;). Rab27a and Rab27b control different steps of the exosome secretion pathway. . Nat Cell Biol 12:, 19–30, 1–13. [CrossRef][PubMed]
    [Google Scholar]
  34. Purcell R. H., Emerson S. U.. ( 2008;). Hepatitis E: an emerging awareness of an old disease. . J Hepatol 48:, 494–503. [CrossRef][PubMed]
    [Google Scholar]
  35. Ramakrishnaiah V., Thumann C., Fofana I., Habersetzer F., Pan Q., de Ruiter P. E., Willemsen R., Demmers J. A., Stalin Raj V.. & other authors ( 2013;). Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. . Proc Natl Acad Sci U S A 110:, 13109–13113. [CrossRef][PubMed]
    [Google Scholar]
  36. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef][PubMed]
    [Google Scholar]
  37. Takahashi M., Hoshino Y., Tanaka T., Takahashi H., Nishizawa T., Okamoto H.. ( 2008a;). Production of monoclonal antibodies against hepatitis E virus capsid protein and evaluation of their neutralizing activity in a cell culture system. . Arch Virol 153:, 657–666. [CrossRef][PubMed]
    [Google Scholar]
  38. Takahashi M., Yamada K., Hoshino Y., Takahashi H., Ichiyama K., Tanaka T., Okamoto H.. ( 2008b;). Monoclonal antibodies raised against the ORF3 protein of hepatitis E virus (HEV) can capture HEV particles in culture supernatant and serum but not those in feces. . Arch Virol 153:, 1703–1713. [CrossRef][PubMed]
    [Google Scholar]
  39. Takahashi M., Tanaka T., Takahashi H., Hoshino Y., Nagashima S., Jirintai, Mizuo H., Yazaki Y., Takagi T.. & other authors ( 2010;). Hepatitis E Virus (HEV) strains in serum samples can replicate efficiently in cultured cells despite the coexistence of HEV antibodies: characterization of HEV virions in blood circulation. . J Clin Microbiol 48:, 1112–1125. [CrossRef][PubMed]
    [Google Scholar]
  40. Tam A. W., Smith M. M., Guerra M. E., Huang C. C., Bradley D. W., Fry K. E., Reyes G. R.. ( 1991;). Hepatitis E virus (HEV): molecular cloning and sequencing of the full-length viral genome. . Virology 185:, 120–131. [CrossRef][PubMed]
    [Google Scholar]
  41. Tamai K., Tanaka N., Nakano T., Kakazu E., Kondo Y., Inoue J., Shiina M., Fukushima K., Hoshino T.. & other authors ( 2010;). Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. . Biochem Biophys Res Commun 399:, 384–390. [CrossRef][PubMed]
    [Google Scholar]
  42. Tamai K., Shiina M., Tanaka N., Nakano T., Yamamoto A., Kondo Y., Kakazu E., Inoue J., Fukushima K.. & other authors ( 2012;). Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. . Virology 422:, 377–385. [CrossRef][PubMed]
    [Google Scholar]
  43. Tanaka T., Takahashi M., Kusano E., Okamoto H.. ( 2007;). Development and evaluation of an efficient cell-culture system for Hepatitis E virus. . J Gen Virol 88:, 903–911. [CrossRef][PubMed]
    [Google Scholar]
  44. Tei S., Kitajima N., Takahashi K., Mishiro S.. ( 2003;). Zoonotic transmission of hepatitis E virus from deer to human beings. . Lancet 362:, 371–373. [CrossRef][PubMed]
    [Google Scholar]
  45. Ticehurst J.. ( 1991;). Identification and characterization of hepatitis E virus. . In Hepatitis and Liver Disease, pp. 501–513. Edited by Hollinger F. B., Lemon S. M., Margolis H... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  46. Trajkovic K., Hsu C., Chiantia S., Rajendran L., Wenzel D., Wieland F., Schwille P., Brügger B., Simons M.. ( 2008;). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. . Science 319:, 1244–1247. [CrossRef][PubMed]
    [Google Scholar]
  47. Wei T., Hibino H., Omura T.. ( 2009;). Release of Rice dwarf virus from insect vector cells involves secretory exosomes derived from multivesicular bodies. . Commun Integr Biol 2:, 324–326. [CrossRef][PubMed]
    [Google Scholar]
  48. Yamada K., Takahashi M., Hoshino Y., Takahashi H., Ichiyama K., Nagashima S., Tanaka T., Okamoto H.. ( 2009a;). ORF3 protein of hepatitis E virus is essential for virion release from infected cells. . J Gen Virol 90:, 1880–1891. [CrossRef][PubMed]
    [Google Scholar]
  49. Yamada K., Takahashi M., Hoshino Y., Takahashi H., Ichiyama K., Tanaka T., Okamoto H.. ( 2009b;). Construction of an infectious cDNA clone of hepatitis E virus strain JE03-1760F that can propagate efficiently in cultured cells. . J Gen Virol 90:, 457–462. [CrossRef][PubMed]
    [Google Scholar]
  50. Yazaki Y., Mizuo H., Takahashi M., Nishizawa T., Sasaki N., Gotanda Y., Okamoto H.. ( 2003;). Sporadic acute or fulminant hepatitis E in Hokkaido, Japan, may be food-borne, as suggested by the presence of hepatitis E virus in pig liver as food. . J Gen Virol 84:, 2351–2357. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066910-0
Loading
/content/journal/jgv/10.1099/vir.0.066910-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error