1887

Abstract

Porcine haemagglutinating encephalomyelitis virus (PHEV) is the main causative agent of porcine coronavirus-associated disease, which is characterized by encephalomyelitis and involves the central nervous system. Little is known about the molecular mechanisms of brain injury caused by PHEV. To gain insight into the interaction between the virus and host cells, changes in global gene expression in the cerebral cortex of PHEV- or mock-infected mice were investigated using DNA microarray analysis and quantitative real-time PCR. The results of the microarray analysis showed that 365 genes on day 3 post-infection (p.i.) and 781 genes on day 5 p.i. were differentially expressed in response to PHEV infection in the cerebral cortex. The upregulated genes were mainly involved in immune system processes, antigen processing and presentation, the Jak–STAT signalling pathway, the RIG-I-like receptor signalling pathway, Toll-like receptor signalling and apoptosis-related proteases. Significantly downregulated genes were mainly involved in nervous-system development, synaptic transmission, neuron-projection development, the transmission of nerve impulses and negative regulation of glial cell differentiation. The differential expression of these genes suggests a strong antiviral host response, but may also contribute to the pathogenesis of PHEV resulting in encephalomyelitis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066845-0
2014-10-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2192.html?itemId=/content/journal/jgv/10.1099/vir.0.066845-0&mimeType=html&fmt=ahah

References

  1. Chakrabarti A. K., Vipat V. C., Mukherjee S., Singh R., Pawar S. D., Mishra A. C.. ( 2010;). Host gene expression profiling in influenza A virus-infected lung epithelial (A549) cells: a comparative analysis between highly pathogenic and modified H5N1 viruses. . Virol J 7:, 219. [CrossRef][PubMed]
    [Google Scholar]
  2. Diamond M. S., Mehlhop E., Oliphant T., Samuel M. A.. ( 2009;). The host immunologic response to West Nile encephalitis virus. . Front Biosci (Landmark Ed) 14:, 3024–3034. [CrossRef][PubMed]
    [Google Scholar]
  3. Fink J., Gu F., Ling L., Tolfvenstam T., Olfat F., Chin K. C., Aw P., George J., Kuznetsov V. A.. & other authors ( 2007;). Host gene expression profiling of dengue virus infection in cell lines and patients. . PLoS Negl Trop Dis 1:, e86. [CrossRef][PubMed]
    [Google Scholar]
  4. Fredericksen B. L., Smith M., Katze M. G., Shi P. Y., Gale M. Jr. ( 2004;). The host response to West Nile virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. . J Virol 78:, 7737–7747. [CrossRef][PubMed]
    [Google Scholar]
  5. Gao W., Zhao K., Zhao C., Du C., Ren W., Song D., Lu H., Chen K., Li Z.. & other authors ( 2011;). Vomiting and wasting disease associated with hemagglutinating encephalomyelitis viruses infection in piglets in Jilin, China. . Virol J 8:, 130. [CrossRef][PubMed]
    [Google Scholar]
  6. Gladue D. P., Zhu J., Holinka L. G., Fernandez-Sainz I., Carrillo C., Prarat M. V., O’Donnell V., Borca M. V.. ( 2010;). Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray. . Virus Res 151:, 10–18. [CrossRef][PubMed]
    [Google Scholar]
  7. Gupta N., Santhosh S. R., Babu J. P., Parida M. M., Rao P. V.. ( 2010;). Chemokine profiling of Japanese encephalitis virus-infected mouse neuroblastoma cells by microarray and real-time RT-PCR: implication in neuropathogenesis. . Virus Res 147:, 107–112. [CrossRef][PubMed]
    [Google Scholar]
  8. Hara Y., Hasebe R., Sunden Y., Ochiai K., Honda E., Sakoda Y., Umemura T.. ( 2009;). Propagation of swine hemagglutinating encephalomyelitis virus and pseudorabies virus in dorsal root ganglia cells. . J Vet Med Sci 71:, 595–601. [CrossRef][PubMed]
    [Google Scholar]
  9. Hirano N., Nomura R., Tawara T., Tohyama K.. ( 2004;). Neurotropism of swine haemagglutinating encephalomyelitis virus (coronavirus) in mice depending upon host age and route of infection. . J Comp Pathol 130:, 58–65. [CrossRef][PubMed]
    [Google Scholar]
  10. Hsieh M. F., Lai S. L., Chen J. P., Sung J. M., Lin Y. L., Wu-Hsieh B. A., Gerard C., Luster A., Liao F.. ( 2006;). Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. . J Immunol 177:, 1855–1863. [CrossRef][PubMed]
    [Google Scholar]
  11. Kajaste-Rudnitski A., Mashimo T., Frenkiel M. P., Guénet J. L., Lucas M., Desprès P.. ( 2006;). The 2′,5′-oligoadenylate synthetase 1b is a potent inhibitor of West Nile virus replication inside infected cells. . J Biol Chem 281:, 4624–4637. [CrossRef][PubMed]
    [Google Scholar]
  12. Kash J. C., Tumpey T. M., Proll S. C., Carter V., Perwitasari O., Thomas M. J., Basler C. F., Palese P., Taubenberger J. K.. & other authors ( 2006;). Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. . Nature 443:, 578–581.[PubMed]
    [Google Scholar]
  13. Knapp S., Yee L. J., Frodsham A. J., Hennig B. J., Hellier S., Zhang L., Wright M., Chiaramonte M., Graves M.. & other authors ( 2003;). Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. . Genes Immun 4:, 411–419. [CrossRef][PubMed]
    [Google Scholar]
  14. Lan Y., Zhao K., Wang G., Dong B., Zhao J., Tang B., Lu H., Gao W., Chang L.. & other authors ( 2013;). Porcine hemagglutinating encephalomyelitis virus induces apoptosis in a porcine kidney cell line via caspase-dependent pathways. . Virus Res 176:, 292–297. [CrossRef][PubMed]
    [Google Scholar]
  15. Lee G., Han D., Song J. Y., Lee Y. S., Kang K. S., Yoon S.. ( 2010;). Genomic expression profiling in lymph nodes with lymphoid depletion from porcine circovirus 2-infected pigs. . J Gen Virol 91:, 2585–2591. [CrossRef][PubMed]
    [Google Scholar]
  16. Lenschow D. J., Giannakopoulos N. V., Gunn L. J., Johnston C., O’Guin A. K., Schmidt R. E., Levine B., Virgin H. W. IV. ( 2005;). Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. . J Virol 79:, 13974–13983. [CrossRef][PubMed]
    [Google Scholar]
  17. Li Y. C., Bai W. Z., Hirano N., Hayashida T., Taniguchi T., Sugita Y., Tohyama K., Hashikawa T.. ( 2013;). Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. . J Comp Neurol 521:, 203–212. [CrossRef][PubMed]
    [Google Scholar]
  18. Martinon F., Tschopp J.. ( 2007;). Inflammatory caspases and inflammasomes: master switches of inflammation. . Cell Death Differ 14:, 10–22. [CrossRef][PubMed]
    [Google Scholar]
  19. Masters P. S.. ( 2006;). The molecular biology of coronaviruses. . Adv Virus Res 66:, 193–292. [CrossRef][PubMed]
    [Google Scholar]
  20. Mengeling W. L., Boothe A. D., Ritchie A. E.. ( 1972;). Characteristics of a coronavirus (strain 67N) of pigs. . Am J Vet Res 33:, 297–308.[PubMed]
    [Google Scholar]
  21. Ritchie K. J., Hahn C. S., Kim K. I., Yan M., Rosario D., Li L., de la Torre J. C., Zhang D. E.. ( 2004;). Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. . Nat Med 10:, 1374–1378. [CrossRef][PubMed]
    [Google Scholar]
  22. Sakurai-Yamashita Y., Shigematsu K., Yamashita K., Niwa M.. ( 2006;). Expression of MCP-1 in the hippocampus of SHRSP with ischemia-related delayed neuronal death. . Cell Mol Neurobiol 26:, 821–829. [CrossRef][PubMed]
    [Google Scholar]
  23. Tumpey T. M., Szretter K. J., Van Hoeven N., Katz J. M., Kochs G., Haller O., García-Sastre A., Staeheli P.. ( 2007;). The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. . J Virol 81:, 10818–10821. [CrossRef][PubMed]
    [Google Scholar]
  24. Warke R. V., Xhaja K., Martin K. J., Fournier M. F., Shaw S. K., Brizuela N., de Bosch N., Lapointe D., Ennis F. A.. & other authors ( 2003;). Dengue virus induces novel changes in gene expression of human umbilical vein endothelial cells. . J Virol 77:, 11822–11832. [CrossRef][PubMed]
    [Google Scholar]
  25. Warke R. V., Martin K. J., Giaya K., Shaw S. K., Rothman A. L., Bosch I.. ( 2008;). TRAIL is a novel antiviral protein against dengue virus. . J Virol 82:, 555–564. [CrossRef][PubMed]
    [Google Scholar]
  26. Yang Y., Ye J., Yang X., Jiang R., Chen H., Cao S.. ( 2011;). Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain. . Virol J 8:, 80. [CrossRef][PubMed]
    [Google Scholar]
  27. Yuan W., Krug R. M.. ( 2001;). Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. . EMBO J 20:, 362–371. [CrossRef][PubMed]
    [Google Scholar]
  28. Zhao P., Zhao L., Zhang T., Qi Y., Wang T., Liu K., Wang H., Feng H., Jin H.. & other authors ( 2011;). Innate immune response gene expression profiles in central nervous system of mice infected with rabies virus. . Comp Immunol Microbiol Infect Dis 34:, 503–512. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066845-0
Loading
/content/journal/jgv/10.1099/vir.0.066845-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error