Newly isolated mAbs broaden the neutralizing epitope in murine norovirus Free

Abstract

Here, we report the isolation and functional characterization of mAbs against two murine norovirus (MNV) strains, MNV-1 and WU20, which were isolated following oral infection of mice. The mAbs were screened for reactivity against the respective homologous and heterologous MNV strain by ELISA. Selected mAbs were of IgA, IgG1, IgG2a or IgG2b isotype and showed a range of Western blot reactivities from non-binding to strong binding, suggesting recognition of conformational and linear epitopes. Some of the anti-MNV-1 antibodies neutralized both MNV-1 and WU20 infections in culture and in mice, but none of the anti-WU20 mAbs neutralized either virus. The non-neutralizing anti-MNV-1 IgG2b antibody 5C4.10 was mapped to the S domain of the MNV-1 capsid, whilst the epitopes of the neutralizing anti-MNV-1 IgA antibodies 2D3.7 and 4F9.4 were mapped to the P domain. Generation of neutralization escape viruses showed that two mutations (V339I and D348E) in the C′D′ loop of the MNV-1 P domain mediated escape from mAb 2D3.7 and 4F9.4 neutralization. These findings broaden the known neutralizing epitopes of MNV to the main surface-exposed loops of the P domain. In addition, the current panel of antibodies provides valuable reagents for studying norovirus biology and development of diagnostic tools.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066753-0
2014-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1958.html?itemId=/content/journal/jgv/10.1099/vir.0.066753-0&mimeType=html&fmt=ahah

References

  1. Allen D. J., Noad R., Samuel D., Gray J. J., Roy P., Iturriza-Gómara M. 2009; Characterisation of a GII-4 norovirus variant-specific surface-exposed site involved in antibody binding. Virol J 6:150 [View Article][PubMed]
    [Google Scholar]
  2. Almanza H., Cubillos C., Angulo I., Mateos F., Castón J. R., van der Poel W. H., Vinje J., Bárcena J., Mena I. 2008; Self-assembly of the recombinant capsid protein of a swine norovirus into virus-like particles and evaluation of monoclonal antibodies cross-reactive with a human strain from genogroup II. J Clin Microbiol 46:3971–3979 [View Article][PubMed]
    [Google Scholar]
  3. Batten C. A., Clarke I. N., Kempster S. L., Oliver S. L., Bridger J. C., Lambden P. R. 2006; Characterization of a cross-reactive linear epitope in human genogroup I and bovine genogroup III norovirus capsid proteins. Virology 356:179–187 [View Article][PubMed]
    [Google Scholar]
  4. Bull R. A., Eden J. S., Rawlinson W. D., White P. A. 2010; Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathog 6:e1000831 [View Article][PubMed]
    [Google Scholar]
  5. Chen Z., Sosnovtsev S. V., Bok K., Parra G. I., Makiya M., Agulto L., Green K. Y., Purcell R. H. 2013; Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis. J Virol 87:9547–9557 [View Article][PubMed]
    [Google Scholar]
  6. Choi J. M., Hutson A. M., Estes M. K., Prasad B. V. 2008; Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus. Proc Natl Acad Sci U S A 105:9175–9180 [View Article][PubMed]
    [Google Scholar]
  7. Debbink K., Donaldson E. F., Lindesmith L. C., Baric R. S. 2012; Genetic mapping of a highly variable norovirus GII.4 blockade epitope: potential role in escape from human herd immunity. J Virol 86:1214–1226 [View Article][PubMed]
    [Google Scholar]
  8. Donaldson E. F., Lindesmith L. C., Lobue A. D., Baric R. S. 2010; Viral shape-shifting: norovirus evasion of the human immune system. Nat Rev Microbiol 8:231–241 [View Article][PubMed]
    [Google Scholar]
  9. Gefter M. L., Margulies D. H., Scharff M. D. 1977; A simple method for polyethylene glycol-promoted hybridization of mouse myeloma cells. Somatic Cell Genet 3:231–236 [View Article][PubMed]
    [Google Scholar]
  10. Glass R. I., Parashar U. D., Estes M. K. 2009; Norovirus gastroenteritis. N Engl J Med 361:1776–1785 [View Article][PubMed]
    [Google Scholar]
  11. Gonzalez-Hernandez M. B., Bragazzi Cunha J., Wobus C. E. 2012; Plaque assay for murine norovirus. J Vis Exp 2012:e4297[PubMed]
    [Google Scholar]
  12. Gonzalez-Hernandez M. B., Liu T., Payne H. C., Stencel-Baerenwald J. E., Ikizler M., Yagita H., Dermody T. S., Williams I. R., Wobus C. E. 2014; Efficient norovirus and reovirus replication in the mouse intestine requires microfold (M) cells. J Virol 88:6934–6943 [View Article][PubMed]
    [Google Scholar]
  13. Green K. Y. 2007; Caliciviridae. In Fields Virology, 5th edn. pp. 949–980 Edited by Knipe D. M., Howley P. M. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  14. Henderson K. S. 2008; Murine norovirus, a recently discovered and highly prevalent viral agent of mice. Lab Anim (NY) 37:314–320 [View Article][PubMed]
    [Google Scholar]
  15. Higo-Moriguchi K., Shirato H., Someya Y., Kurosawa Y., Takeda N., Taniguchi K. 2014; Isolation of cross-reactive human monoclonal antibodies that prevent binding of human noroviruses to histo-blood group antigens. J Med Virol 86:558–567 [View Article][PubMed]
    [Google Scholar]
  16. Karst S. M., Wobus C. E., Lay M., Davidson J., Virgin H. W. IV 2003; STAT1-dependent innate immunity to a Norwalk-like virus. Science 2991575–1578 [CrossRef]
    [Google Scholar]
  17. Katpally U., Wobus C. E., Dryden K., Virgin H. W. IV, Smith T. J. 2008; Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles. J Virol 82:2079–2088 [View Article][PubMed]
    [Google Scholar]
  18. Katpally U., Voss N. R., Cavazza T., Taube S., Rubin J. R., Young V. L., Stuckey J., Ward V. K., Virgin H. W. IV other authors 2010; High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains. J Virol 84:5836–5841 [View Article][PubMed]
    [Google Scholar]
  19. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. 1979; A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol 123:1548–1550[PubMed]
    [Google Scholar]
  20. Kolawole A. O., Li M., Xia C., Fischer A. E., Giacobbi N. S., Rippinger C. M., Proescher J. B., Wu S. K., Bessling S. L. other authors 2014; Flexibility in surface-exposed loops in a virus capsid mediates escape from antibody neutralization. J Virol 88:4543–4557 [View Article][PubMed]
    [Google Scholar]
  21. Lencioni K. C., Drivdahl R., Seamons A., Treuting P. M., Brabb T., Maggio-Price L. 2011; Lack of effect of murine norovirus infection on a mouse model of bacteria-induced colon cancer. Comp Med 61:219–226[PubMed]
    [Google Scholar]
  22. Li X., Zhou R., Wang Y., Sheng H., Tian X., Li H., Qiu H. 2009; Identification and characterization of a native epitope common to norovirus strains GII/4, GII/7 and GII/8. Virus Res 140:188–193 [View Article][PubMed]
    [Google Scholar]
  23. Li X., Zhou R., Tian X., Li H., Zhou Z. 2010; Characterization of a cross-reactive monoclonal antibody against Norovirus genogroups I, II, III and V. Virus Res 151:142–147 [View Article][PubMed]
    [Google Scholar]
  24. Lochridge V. P., Hardy M. E. 2007; A single-amino-acid substitution in the P2 domain of VP1 of murine norovirus is sufficient for escape from antibody neutralization. J Virol 81:12316–12322 [View Article][PubMed]
    [Google Scholar]
  25. McCartney S. A., Thackray L. B., Gitlin L., Gilfillan S., Virgin H. W. IV, Colonna M. 2008; MDA-5 recognition of a murine norovirus. PLoS Pathog 4:e1000108 [View Article][PubMed]
    [Google Scholar]
  26. Nilsson M., Hedlund K. O., Thorhagen M., Larson G., Johansen K., Ekspong A., Svensson L. 2003; Evolution of human calicivirus RNA in vivo: accumulation of mutations in the protruding P2 domain of the capsid leads to structural changes and possibly a new phenotype. J Virol 77:13117–13124 [View Article][PubMed]
    [Google Scholar]
  27. Nishinarita S., Claflin J. L., Lieberman R. 1985; T15 D region germ line amino acid sequences distinguished by monoclonal anti-idiotope antibody. J Immunol 134:436–442[PubMed]
    [Google Scholar]
  28. Ohsugi T., Matsuura K., Kawabe S., Nakamura N., Kumar J. M., Wakamiya M., Morikawa S., Urano T. 2013; Natural infection of murine norovirus in conventional and specific pathogen-free laboratory mice. Front Microbiol 4:12 [View Article][PubMed]
    [Google Scholar]
  29. Parker T. D., Kitamoto N., Tanaka T., Hutson A. M., Estes M. K. 2005; Identification of Genogroup I and Genogroup II broadly reactive epitopes on the norovirus capsid. J Virol 79:7402–7409 [View Article][PubMed]
    [Google Scholar]
  30. Parra G. I., Abente E. J., Sandoval-Jaime C., Sosnovtsev S. V., Bok K., Green K. Y. 2012; Multiple antigenic sites are involved in blocking the interaction of GII.4 norovirus capsid with ABH histo-blood group antigens. J Virol 86:7414–7426 [View Article][PubMed]
    [Google Scholar]
  31. Prasad B. V., Rothnagel R., Jiang X., Estes M. K. 1994; Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68:5117–5125[PubMed]
    [Google Scholar]
  32. Prasad B. V., Hardy M. E., Jiang X., Estes M. K. 1996; Structure of Norwalk virus. Arch Virol Suppl 12:237–242[PubMed]
    [Google Scholar]
  33. Prasad B. V., Hardy M. E., Dokland T., Bella J., Rossmann M. G., Estes M. K. 1999; X-ray crystallographic structure of the Norwalk virus capsid. Science 286287–290 [CrossRef]
    [Google Scholar]
  34. Reeck A., Kavanagh O., Estes M. K., Opekun A. R., Gilger M. A., Graham D. Y., Atmar R. L. 2010; Serological correlate of protection against norovirus-induced gastroenteritis. J Infect Dis 202:1212–1218 [View Article][PubMed]
    [Google Scholar]
  35. Scott B. B., Sadigh S., Andrew E. M., Maini R. N., Mageed R. A. 1994; Affinity maturation and isotype switch in clonally related anti-erythrocyte autoantibodies. Scand J Immunol 40:16–21 [View Article][PubMed]
    [Google Scholar]
  36. Smith D. B., McFadden N., Blundell R. J., Meredith A., Simmonds P. 2012; Diversity of murine norovirus in wild-rodent populations: species-specific associations suggest an ancient divergence. J Gen Virol 93:259–266 [View Article][PubMed]
    [Google Scholar]
  37. Tan M., Hegde R. S., Jiang X. 2004; The P domain of norovirus capsid protein forms dimer and binds to histo-blood group antigen receptors. J Virol 78:6233–6242 [View Article][PubMed]
    [Google Scholar]
  38. Taube S., Rubin J. R., Katpally U., Smith T. J., Kendall A., Stuckey J. A., Wobus C. E. 2010; High-resolution x-ray structure and functional analysis of the murine norovirus 1 capsid protein protruding domain. J Virol 84:5695–5705 [View Article][PubMed]
    [Google Scholar]
  39. Taube S., Kolawole A. O., Höhne M., Wilkinson J. E., Handley S. A., Perry J. W., Thackray L. B., Akkina R., Wobus C. E. 2013; A mouse model for human norovirus. MBio 4:e00450-13 [View Article][PubMed]
    [Google Scholar]
  40. Thackray L. B., Wobus C. E., Chachu K. A., Liu B., Alegre E. R., Henderson K. S., Kelley S. T., Virgin H. W. IV 2007; Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81:10460–10473 [View Article][PubMed]
    [Google Scholar]
  41. Wobus C. E., Karst S. M., Thackray L. B., Chang K. O., Sosnovtsev S. V., Belliot G., Krug A., Mackenzie J. M., Green K. Y., Virgin H. W. 2004; Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432 [View Article][PubMed]
    [Google Scholar]
  42. Wobus C. E., Thackray L. B., Virgin H. W. IV 2006; Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80:5104–5112 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066753-0
Loading
/content/journal/jgv/10.1099/vir.0.066753-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed