1887

Abstract

Virologic surveillance is a critical component of measles management. One of the criteria for verification of elimination of endemic measles is genetic analysis of wild-type viruses to demonstrate lack of an indigenous genotype. Measles is yet to be eliminated in China, and genotype H1 has been detected continuously since virologic surveillance was initiated in 1993. Virologic surveillance has been very active in China, providing a unique opportunity to conduct a detailed study of the evolution of a single, endemic genotype over a timespan of nearly two decades. Phylogenetic analysis performed on the 450 nt coding sequence for the C-terminal 150 amino acids of the nucleoprotein (N-450), fusion (F) gene and haemagglutinin (H) gene confirmed the continued circulation of genotype H1 viruses for 19 years. No evidence of selective pressure for the H protein was found. The substitution rates ranged from 0.75×10 substitutions site year for H to 1.65×10 substitutions site year for N-450. The time of most recent common ancestor (TMRCA) for genotype H1 was estimated as approximately 1985 (95 % highest probability density, 1979–1989). Finally, the overall diversity of measles sequences from China decreased from 2005 to 2012, coincident with a substantial decrease in measles cases. The results suggest that detailed evolutionary analyses should facilitate the documentation of eventual measles elimination in China. Moreover, the molecular approaches used in this study can be applied in other countries approaching measles elimination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066746-0
2014-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1892.html?itemId=/content/journal/jgv/10.1099/vir.0.066746-0&mimeType=html&fmt=ahah

References

  1. Anonymous . ( 2013; ). Global Vaccine Action Plan: decade of vaccines collaboration. . Vaccine 31: (Suppl 2), B5–B31. [CrossRef] [PubMed]
    [Google Scholar]
  2. Domingo E. , Holland J. J. . ( 1997; ). RNA virus mutations and fitness for survival. . Annu Rev Microbiol 51:,151–178. [CrossRef] [PubMed]
    [Google Scholar]
  3. Drummond A. J. , Rambaut A. , Shapiro B. , Pybus O. G. . ( 2005; ). Bayesian coalescent inference of past population dynamics from molecular sequences. . Mol Biol Evol 22:, 1185–1192. [CrossRef] [PubMed]
    [Google Scholar]
  4. Drummond A. J. , Suchard M. A. , Xie D. , Rambaut A. . ( 2012; ). Bayesian phylogenetics with BEAUti and the BEAST 1.7. . Mol Biol Evol 29:, 1969–1973. [CrossRef] [PubMed]
    [Google Scholar]
  5. Duffy S. , Shackelton L. A. , Holmes E. C. . ( 2008; ). Rates of evolutionary change in viruses: patterns and determinants. . Nat Rev Genet 9:, 267–276. [CrossRef] [PubMed]
    [Google Scholar]
  6. Edgar R. C. . ( 2004; ). MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  7. Efron B. , Tibshirani R. J. . ( 1994; ). An Introduction to the Bootstrap. Boca Raton:: CRC Press;.
    [Google Scholar]
  8. Griffin D. E. B. , Bellini W. J. . ( 1996; ). Measles viruses. . In Fields Virology, , 3rd edn., pp. 1267–1296. Edited by Fields B. N. , Knipe D. M. , Howley P. M. . . Philadelphia:: Lippincott-Raven;.
    [Google Scholar]
  9. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hahné S. , van Houdt R. , Koedijk F. , van Ballegooijen M. , Cremer J. , Bruisten S. , Coutinho R. , Boot H. . ( 2013; ). Selective hepatitis B virus vaccination has reduced hepatitis B virus transmission in the Netherlands. . PLoS ONE 8:, e67866. [CrossRef] [PubMed]
    [Google Scholar]
  11. Ji Y. , Zhang Y. , Xu S. , Zhu Z. , Zuo S. , Jiang X. , Lu P. , Wang C. , Liang Y. . & other authors ( 2009; ). Measles resurgence associated with continued circulation of genotype H1 viruses in China, 2005. . Virol J 6:, 135. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ji Y. , Xu S. , Zhang Y. , Zhu Z. , Mao N. , Jiang X. , Ma C. , Lu P. , Wang C. . & other authors ( 2010; ). Genetic characterization of wild-type measles viruses isolated in China, 2006-2007. . Virol J 7:, 105. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kobune F. , Sakata H. , Sugiura A. . ( 1990; ). Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. . J Virol 64:, 700–705.[PubMed]
    [Google Scholar]
  14. Mahar J. E. , Bok K. , Green K. Y. , Kirkwood C. D. . ( 2013; ). The importance of intergenic recombination in norovirus GII.3 evolution. . J Virol 87:, 3687–3698. [CrossRef] [PubMed]
    [Google Scholar]
  15. Mizuta K. , Saitoh M. , Kobayashi M. , Tsukagoshi H. , Aoki Y. , Ikeda T. , Abiko C. , Katsushima N. , Itagaki T. . & other authors ( 2011; ). Detailed genetic analysis of hemagglutinin-neuraminidase glycoprotein gene in human parainfluenza virus type 1 isolates from patients with acute respiratory infection between 2002 and 2009 in Yamagata prefecture, Japan. . Virol J 8:, 533. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ono N. , Tatsuo H. , Hidaka Y. , Aoki T. , Minagawa H. , Yanagi Y. . ( 2001; ). Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. . J Virol 75:, 4399–4401. [CrossRef] [PubMed]
    [Google Scholar]
  17. Perry R. T. , Gacic-Dobo M. , Dabbagh A. , Mulders M. N. , Strebel P. M. , Okwo-Bele J. M. , Rota P. A. , Goodson J. L. . Centers for Disease Control and Prevention (CDC) ( 2014; ). Global control and regional elimination of measles, 2014. . MMWR Morb Mortal Wkly Rep 63:, 103–107.[PubMed]
    [Google Scholar]
  18. Pomeroy L. W. , Bjørnstad O. N. , Holmes E. C. . ( 2008; ). The evolutionary and epidemiological dynamics of the paramyxoviridae. . J Mol Evol 66:, 98–106. [CrossRef] [PubMed]
    [Google Scholar]
  19. Pond S. L. , Frost S. D. . ( 2005; ). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. . Bioinformatics 21:, 2531–2533. [CrossRef] [PubMed]
    [Google Scholar]
  20. Posada D. . ( 2008; ). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef] [PubMed]
    [Google Scholar]
  21. Pretorius M. A. , van Niekerk S. , Tempia S. , Moyes J. , Cohen C. , Madhi S. A. , Venter M. . SARI Surveillance Group ( 2013; ). Replacement and positive evolution of subtype A and B respiratory syncytial virus G-protein genotypes from 1997-2012 in South Africa. . J Infect Dis 208: (Suppl 3), S227–S237. [CrossRef] [PubMed]
    [Google Scholar]
  22. Rambaut A. , Drummond A. . ( 2010; ). FigTree v1.3.1. . Institute of Evolutionary Biology, University of Edinburgh;, Edinburgh, UK:. http://tree.bio.ed.ac.uk/software/figtree/.
  23. Rima B. K. , Earle J. A. , Baczko K. , ter Meulen V. , Liebert U. G. , Carstens C. , Carabaña J. , Caballero M. , Celma M. L. , Fernandez-Muñoz R. . ( 1997; ). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. . J Gen Virol 78:, 97–106.[PubMed]
    [Google Scholar]
  24. Rota P. A. , Brown K. , Mankertz A. , Santibanez S. , Shulga S. , Muller C. P. , Hübschen J. M. , Siqueira M. , Beirnes J. . & other authors ( 2011; ). Global distribution of measles genotypes and measles molecular epidemiology. . J Infect Dis 204: (Suppl 1), S514–S523. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitoh M. , Takeda M. , Gotoh K. , Takeuchi F. , Sekizuka T. , Kuroda M. , Mizuta K. , Ryo A. , Tanaka R. . & other authors ( 2012; ). Molecular evolution of hemagglutinin (H) gene in measles virus genotypes D3, D5, D9, and H1. . PLoS ONE 7:, e50660. [CrossRef] [PubMed]
    [Google Scholar]
  26. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Stadler T. , Kühnert D. , Bonhoeffer S. , Drummond A. J. . ( 2013; ). Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). . Proc Natl Acad Sci U S A 110:, 228–233. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739.[CrossRef]
    [Google Scholar]
  29. Wei C. , Shi J. , Liu B. , Shi Y. , Zheng J. , Xu G. , Ma J. , Wang G. , Li F. . ( 2012; ). Molecular characterization of the measles virus genotypes in JiLin Province, China. . PLoS ONE 7:, e46011. [CrossRef] [PubMed]
    [Google Scholar]
  30. WHO ( 2012a; ). The Measles & Rubella Initiative Welcomes World Health Assembly Commitment to Measles and Rubella Elimination Goals. .
    [Google Scholar]
  31. WHO ( 2012b; ). Measles virus nomenclature update: 2012. . Wkly Epidemiol Rec 87:, 73–81.[PubMed]
    [Google Scholar]
  32. Woelk C. H. , Pybus O. G. , Jin L. , Brown D. W. , Holmes E. C. . ( 2002; ). Increased positive selection pressure in persistent (SSPE) versus acute measles virus infections. . J Gen Virol 83:, 1419–1430.[PubMed]
    [Google Scholar]
  33. Xu W. , Tamin A. , Rota J. S. , Zhang L. , Bellini W. J. , Rota P. A. . ( 1998; ). New genetic group of measles virus isolated in the People’s Republic of China. . Virus Res 54:, 147–156. [CrossRef] [PubMed]
    [Google Scholar]
  34. Zhang Y. , Zhu Z. , Rota P. A. , Jiang X. , Hu J. , Wang J. , Tang W. , Zhang Z. , Li C. . & other authors ( 2007; ). Molecular epidemiology of measles viruses in China, 1995-2003. . Virol J 4:, 14. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang Y. , Ji Y. , Jiang X. , Xu S. , Zhu Z. , Zheng L. , He J. , Ling H. , Wang Y. . & other authors ( 2008; ). Genetic characterization of measles viruses in China, 2004. . Virol J 5:, 120. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zhang Y. , Zhou J. , Bellini W. J. , Xu W. , Rota P. A. . ( 2009; ). Genetic characterization of Chinese measles vaccines by analysis of complete genomic sequences. . J Med Virol 81:, 1477–1483. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066746-0
Loading
/content/journal/jgv/10.1099/vir.0.066746-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error