1887

Abstract

The relationship between Epstein-Barr virus (EBV) and the germinal centre (GC) of the asymptomatic host remains an enigma. The occasional appearance of EBV-positive germinal centres in some patients, particularly those with a history of immunosuppression, suggests that EBV numbers in the GC are subject to immune control. The relationship, if any, between lymphoid hyperplasia with EBV-positive germinal centres and subsequent or concurrent lymphomagenesis remains to be clarified. As far as the development of EBV-associated Hodgkin's lymphoma is concerned, the suppression of virus replication, mediated by LMP1 on the one hand, and the loss of B-cell receptor signalling on the other, appears to be an important pathogenic mechanism. A further important emerging concept is that alterations in the microenvironment of the EBV-infected B-cell may be important for lymphomagenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066712-0
2014-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1861.html?itemId=/content/journal/jgv/10.1099/vir.0.066712-0&mimeType=html&fmt=ahah

References

  1. Adler B., Schaadt E., Kempkes B., Zimber-Strobl U., Baier B., Bornkamm G. W.. ( 2002;). Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1. . Proc Natl Acad Sci U S A 99:, 437–442. [CrossRef][PubMed]
    [Google Scholar]
  2. Amoroso R., Fitzsimmons L., Thomas W. A., Kelly G. L., Rowe M., Bell A. I.. ( 2011;). Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. . J Virol 85:, 996–1010. [CrossRef][PubMed]
    [Google Scholar]
  3. Anagnostopoulos I., Hummel M., Kreschel C., Stein H.. ( 1995;). Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. . Blood 85:, 744–750.[PubMed]
    [Google Scholar]
  4. Anderton E., Yee J., Smith P., Crook T., White R. E., Allday M. J.. ( 2008;). Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. . Oncogene 27:, 421–433. [CrossRef][PubMed]
    [Google Scholar]
  5. Araujo I., Foss H. D., Hummel M., Anagnostopoulos I., Barbosa H. S., Bittencourt A., Stein H.. ( 1999;). Frequent expansion of Epstein-Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. . J Pathol 187:, 326–330. [CrossRef][PubMed]
    [Google Scholar]
  6. Armstrong A. A., Alexander F. E., Cartwright R., Angus B., Krajewski A. S., Wright D. H., Brown I., Lee F., Kane E., Jarrett R. F.. ( 1998;). Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. . Leukemia 12:, 1272–1276. [CrossRef][PubMed]
    [Google Scholar]
  7. Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A.. ( 1998;). EBV persistence in memory B-cells in vivo. . Immunity 9:, 395–404. [CrossRef][PubMed]
    [Google Scholar]
  8. Babcock G. J., Hochberg D., Thorley-Lawson A. D.. ( 2000;). The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B-cell. . Immunity 13:, 497–506. [CrossRef][PubMed]
    [Google Scholar]
  9. Balfour H. H. Jr, Odumade O. A., Schmeling D. O., Mullan B. D., Ed J. A., Knight J. A., Vezina H. E., Thomas W., Hogquist K. A.. ( 2013;). Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. . J Infect Dis 207:, 80–88. [CrossRef][PubMed]
    [Google Scholar]
  10. Bargou R. C., Emmerich F., Krappmann D., Bommert K., Mapara M. Y., Arnold W., Royer H. D., Grinstein E., Greiner A.. & other authors ( 1997;). Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. . J Clin Invest 100:, 2961–2969. [CrossRef][PubMed]
    [Google Scholar]
  11. Bechtel D., Kurth J., Unkel C., Küppers R.. ( 2005;). Transformation of BCR-deficient germinal-center B-cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. . Blood 106:, 4345–4350. [CrossRef][PubMed]
    [Google Scholar]
  12. Bräuninger A., Spieker T., Mottok A., Baur A. S., Küppers R., Hansmann M. L.. ( 2003;). Epstein-Barr virus (EBV)-positive lymphoproliferations in post-transplant patients show immunoglobulin V gene mutation patterns suggesting interference of EBV with normal B-cell differentiation processes. . Eur J Immunol 33:, 1593–1602. [CrossRef][PubMed]
    [Google Scholar]
  13. Bräuninger A., Schmitz R., Bechtel D., Renné C., Hansmann M. L., Küppers R.. ( 2006;). Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. . Int J Cancer 118:, 1853–1861. [CrossRef][PubMed]
    [Google Scholar]
  14. Cader F. Z., Vockerodt M., Bose S., Nagy E., Brundler M. A., Kearns P., Murray P. G.. ( 2013;). The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. . Blood 122:, 4237–4245. [CrossRef][PubMed]
    [Google Scholar]
  15. Caldwell R. G., Wilson J. B., Anderson S. J., Longnecker R.. ( 1998;). Epstein-Barr virus LMP2A drives B-cell development and survival in the absence of normal B-cell receptor signals. . Immunity 9:, 405–411. [CrossRef][PubMed]
    [Google Scholar]
  16. Casola S., Otipoby K. L., Alimzhanov M., Humme S., Uyttersprot N., Kutok J. L., Carroll M. C., Rajewsky K.. ( 2004;). B-cell receptor signal strength determines B-cell fate. . Nat Immunol 5:, 317–327. [CrossRef][PubMed]
    [Google Scholar]
  17. Chaganti S., Bell A. I., Pastor N. B., Milner A. E., Drayson M., Gordon J., Rickinson A. B.. ( 2005;). Epstein-Barr virus infection in vitro can rescue germinal center B-cells with inactivated immunoglobulin genes. . Blood 106:, 4249–4252. [CrossRef][PubMed]
    [Google Scholar]
  18. Chaganti S., Heath E. M., Bergler W., Kuo M., Buettner M., Niedobitek G., Rickinson A. B., Bell A. I.. ( 2009;). Epstein-Barr virus colonization of tonsillar and peripheral blood B-cell subsets in primary infection and persistence. . Blood 113:, 6372–6381. [CrossRef][PubMed]
    [Google Scholar]
  19. Countryman J., Miller G.. ( 1985;). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. . Proc Natl Acad Sci U S A 82:, 4085–4089. [CrossRef][PubMed]
    [Google Scholar]
  20. Crawford D. H., Ando I.. ( 1986;). EB virus induction is associated with B-cell maturation. . Immunology 59:, 405–409.[PubMed]
    [Google Scholar]
  21. Dojcinov S. D., Venkataraman G., Pittaluga S., Wlodarska I., Schrager J. A., Raffeld M., Hills R. K., Jaffe E. S.. ( 2011;). Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. . Blood 117:, 4726–4735. [CrossRef][PubMed]
    [Google Scholar]
  22. Dutton A., Reynolds G. M., Dawson C. W., Young L. S., Murray P. G.. ( 2005;). Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. . J Pathol 205:, 498–506. [CrossRef][PubMed]
    [Google Scholar]
  23. Engels N., Yigit G., Emmerich C. H., Czesnik D., Schild D., Wienands J.. ( 2012;). Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B-cell antigen receptor-like activation signal. . Cell Commun Signal 10:, 9. [CrossRef][PubMed]
    [Google Scholar]
  24. Flavell K. J., Biddulph J. P., Powell J. E., Parkes S. E., Redfern D., Weinreb M., Nelson P., Mann J. R., Young L. S., Murray P. G.. ( 2001;). South Asian ethnicity and material deprivation increase the risk of Epstein-Barr virus infection in childhood Hodgkin’s disease. . Br J Cancer 85:, 350–356. [CrossRef][PubMed]
    [Google Scholar]
  25. Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W.. ( 1997;). Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. . EMBO J 16:, 6131–6140. [CrossRef][PubMed]
    [Google Scholar]
  26. Glaser S. L., Lin R. J., Stewart S. L., Ambinder R. F., Jarrett R. F., Brousset P., Pallesen G., Gulley M. L., Khan G.. & other authors ( 1997;). Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. . Int J Cancer 70:, 375–382. [CrossRef][PubMed]
    [Google Scholar]
  27. He B., Raab-Traub N., Casali P., Cerutti A.. ( 2003;). EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. . J Immunol 171:, 5215–5224. [CrossRef][PubMed]
    [Google Scholar]
  28. Hochberg D., Middeldorp J. M., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A.. ( 2004;). Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. . Proc Natl Acad Sci U S A 101:, 239–244. [CrossRef][PubMed]
    [Google Scholar]
  29. Hudnall S. D., Ge Y., Wei L., Yang N. P., Wang H. Q., Chen T.. ( 2005;). Distribution and phenotype of Epstein-Barr virus-infected cells in human pharyngeal tonsils. . Mod Pathol 18:, 519–527. [CrossRef][PubMed]
    [Google Scholar]
  30. Jarrett R. F., Gallagher A., Jones D. B., Alexander F. E., Krajewski A. S., Kelsey A., Adams J., Angus B., Gledhill S., Wright D. H.. ( 1991;). Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. . J Clin Pathol 44:, 844–848. [CrossRef][PubMed]
    [Google Scholar]
  31. Kieff E., Rickinson A. B.. ( 2001;). Epstein–Barr virus and its replication. . In Fields Virology, , 4th edn., pp. 2511–2573. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  32. Klein U., Dalla-Favera R.. ( 2008;). Germinal centres: role in B-cell physiology and malignancy. . Nat Rev Immunol 8:, 22–33. [CrossRef][PubMed]
    [Google Scholar]
  33. Kube D., Holtick U., Vockerodt M., Ahmadi T., Haier B., Behrmann I., Heinrich P. C., Diehl V., Tesch H.. ( 2001;). STAT3 is constitutively activated in Hodgkin cell lines. . Blood 98:, 762–770. [CrossRef][PubMed]
    [Google Scholar]
  34. Küppers R.. ( 2005;). Mechanisms of B-cell lymphoma pathogenesis. . Nat Rev Cancer 5:, 251–262. [CrossRef][PubMed]
    [Google Scholar]
  35. Kurth J., Spieker T., Wustrow J., Strickler G. J., Hansmann L. M., Rajewsky K., Küppers R.. ( 2000;). EBV-infected B-cells in infectious mononucleosis: viral strategies for spreading in the B-cell compartment and establishing latency. . Immunity 13:, 485–495. [CrossRef][PubMed]
    [Google Scholar]
  36. Kurth J., Hansmann M. L., Rajewsky K., Küppers R.. ( 2003;). Epstein-Barr virus-infected B-cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. . Proc Natl Acad Sci U S A 100:, 4730–4735. [CrossRef][PubMed]
    [Google Scholar]
  37. Laichalk L. L., Thorley-Lawson D. A.. ( 2005;). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. . J Virol 79:, 1296–1307. [CrossRef][PubMed]
    [Google Scholar]
  38. Lin K. I., Lin Y., Calame K.. ( 2000;). Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. . Mol Cell Biol 20:, 8684–8695. [CrossRef][PubMed]
    [Google Scholar]
  39. MacLennan I. C.. ( 1994;). Germinal centers. . Annu Rev Immunol 12:, 117–139. [CrossRef][PubMed]
    [Google Scholar]
  40. Mancao C., Altmann M., Jungnickel B., Hammerschmidt W.. ( 2005;). Rescue of “crippled” germinal center B-cells from apoptosis by Epstein-Barr virus. . Blood 106:, 4339–4344. [CrossRef][PubMed]
    [Google Scholar]
  41. Martín P., Gomez-Lozano N., Montes S., Salas C., Provencio M., Bellas C.. ( 2011;). Epstein-Barr virus in the germinal centres of adenopathies affected by classic Hodgkin lymphoma. . Histopathology 59:, 349–352.[PubMed]
    [Google Scholar]
  42. Martín P., Coronado M. J., Bellas C.. ( 2012;). Evidence of the intersection of Epstein-Barr virus with germinal center. . APMIS 120:, 253–254. [CrossRef][PubMed]
    [Google Scholar]
  43. Maruo S., Zhao B., Johannsen E., Kieff E., Zou J., Takada K.. ( 2011;). Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. . Proc Natl Acad Sci U S A 108:, 1919–1924. [CrossRef][PubMed]
    [Google Scholar]
  44. Miller C. L., Lee J. H., Kieff E., Longnecker R.. ( 1994;). An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. . Proc Natl Acad Sci U S A 91:, 772–776. [CrossRef][PubMed]
    [Google Scholar]
  45. Niedobitek G., Herbst H., Young L. S., Brooks L., Masucci M. G., Crocker J., Rickinson A. B., Stein H.. ( 1992;). Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. . Blood 79:, 2520–2526.[PubMed]
    [Google Scholar]
  46. Niedobitek G., Agathanggelou A., Herbst H., Whitehead L., Wright D. H., Young L. S.. ( 1997;). Epstein-Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. . J Pathol 182:, 151–159. [CrossRef][PubMed]
    [Google Scholar]
  47. Niedobitek G., Agathanggelou A., Steven N., Young L. S.. ( 2000;). Epstein-Barr virus (EBV) in infectious mononucleosis: detection of the virus in tonsillar B lymphocytes but not in desquamated oropharyngeal epithelial cells. . Mol Pathol 53:, 37–42. [CrossRef][PubMed]
    [Google Scholar]
  48. Oyama T., Ichimura K., Suzuki R., Suzumiya J., Ohshima K., Yatabe Y., Yokoi T., Kojima M., Kamiya Y.. & other authors ( 2003;). Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. . Am J Surg Pathol 27:, 16–26. [CrossRef][PubMed]
    [Google Scholar]
  49. Oyama T., Yamamoto K., Asano N., Oshiro A., Suzuki R., Kagami Y., Morishima Y., Takeuchi K., Izumo T.. & other authors ( 2007;). Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. . Clin Cancer Res 13:, 5124–5132. [CrossRef][PubMed]
    [Google Scholar]
  50. Panagopoulos D., Victoratos P., Alexiou M., Kollias G., Mosialos G.. ( 2004;). Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. . J Virol 78:, 13253–13261. [CrossRef][PubMed]
    [Google Scholar]
  51. Prince S., Keating S., Fielding C., Brennan P., Floettmann E., Rowe M.. ( 2003;). Latent membrane protein 1 inhibits Epstein-Barr virus lytic cycle induction and progress via different mechanisms. . J Virol 77:, 5000–5007. [CrossRef][PubMed]
    [Google Scholar]
  52. Rickinson A., Kieff E.. ( 2001;). Epstein–Barr virus. . In Fields Virology, , 4th edn., pp. 2575–2627. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  53. Roughan J. E., Thorley-Lawson D. A.. ( 2009;). The intersection of Epstein-Barr virus with the germinal center. . J Virol 83:, 3968–3976. [CrossRef][PubMed]
    [Google Scholar]
  54. Roughan J. E., Torgbor C., Thorley-Lawson D. A.. ( 2010;). Germinal center B-cells latently infected with Epstein-Barr virus proliferate extensively but do not increase in number. . J Virol 84:, 1158–1168. [CrossRef][PubMed]
    [Google Scholar]
  55. Schaadt E., Baier B., Mautner J., Bornkamm G. W., Adler B.. ( 2005;). Epstein-Barr virus latent membrane protein 2A mimics B-cell receptor-dependent virus reactivation. . J Gen Virol 86:, 551–559. [CrossRef][PubMed]
    [Google Scholar]
  56. Skalska L., White R. E., Franz M., Ruhmann M., Allday M. J.. ( 2010;). Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. . PLoS Pathog 6:, e1000951. [CrossRef][PubMed]
    [Google Scholar]
  57. Swanson-Mungerson M. A., Caldwell R. G., Bultema R., Longnecker R.. ( 2005;). Epstein-Barr virus LMP2A alters in vivo and in vitro models of B-cell anergy, but not deletion, in response to autoantigen. . J Virol 79:, 7355–7362. [CrossRef][PubMed]
    [Google Scholar]
  58. Takada K., Shimizu N., Sakuma S., Ono Y.. ( 1986;). Trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. . J Virol 57:, 1016–1022.[PubMed]
    [Google Scholar]
  59. Thorley-Lawson D. A.. ( 2001;). Epstein-Barr virus: exploiting the immune system. . Nat Rev Immunol 1:, 75–82. [CrossRef][PubMed]
    [Google Scholar]
  60. Thorley-Lawson D. A., Gross A.. ( 2004;). Persistence of the Epstein-Barr virus and the origins of associated lymphomas. . N Engl J Med 350:, 1328–1337. [CrossRef][PubMed]
    [Google Scholar]
  61. Thorley-Lawson D. A., Duca K. A., Shapiro M.. ( 2008;). Epstein-Barr virus: a paradigm for persistent infection – for real and in virtual reality. . Trends Immunol 29:, 195–201. [CrossRef][PubMed]
    [Google Scholar]
  62. Vockerodt M., Morgan S. L., Kuo M., Wei W., Chukwuma M. B., Arrand J. R., Kube D., Gordon J., Young L. S.. & other authors ( 2008;). The Epstein–Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B-cells towards a Hodgkin’s Reed–Sternberg-like phenotype. . J Pathol 216:, 83–92. [CrossRef][PubMed]
    [Google Scholar]
  63. Vockerodt M., Wei W., Nagy E., Prouzova Z., Schrader A., Kube D., Rowe M., Woodman C. B., Murray P. G.. ( 2013;). Suppression of the LMP2A target gene, EGR-1, protects Hodgkin’s lymphoma cells from entry to the EBV lytic cycle. . J Pathol 230:, 399–409. [CrossRef][PubMed]
    [Google Scholar]
  64. Vrzalikova K., Vockerodt M., Leonard S., Bell A., Wei W., Schrader A., Wright K. L., Kube D., Rowe M.. & other authors ( 2011;). Down-regulation of BLIMP1 by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B-cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. . Blood 117:, 5907–5917. [CrossRef][PubMed]
    [Google Scholar]
  65. Weiss L. M., Movahed L. A., Warnke R. A., Sklar J... ( 1989;). Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. . N Engl J Med 320:, 502–506. [CrossRef][PubMed]
    [Google Scholar]
  66. White R. E., Rämer P. C., Naresh K. N., Meixlsperger S., Pinaud L., Rooney C., Savoldo B., Coutinho R., Bödör C.. & other authors ( 2012;). EBNA3B-deficient EBV promotes B-cell lymphomagenesis in humanized mice and is found in human tumors. . J Clin Invest 122:, 1487–1502. [CrossRef][PubMed]
    [Google Scholar]
  67. Wu T. C., Mann R. B., Charache P., Hayward S. D., Staal S., Lambe B. C., Ambinder R. F.. ( 1990;). Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. . Int J Cancer 46:, 801–804. [CrossRef][PubMed]
    [Google Scholar]
  68. Young L. S., Murray P. G.. ( 2003;). Epstein-Barr virus and oncogenesis: from latent genes to tumours. . Oncogene 22:, 5108–5121. [CrossRef][PubMed]
    [Google Scholar]
  69. Young L. S., Rickinson A. B.. ( 2004;). Epstein-Barr virus: 40 years on. . Nat Rev Cancer 4:, 757–768. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066712-0
Loading
/content/journal/jgv/10.1099/vir.0.066712-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error