1887

Abstract

While chickens are an important reservoir for emerging pathogens such as avian influenza viruses, little is known about the diversity of picornaviruses in poultry. We discovered a previously unknown diversity of picornaviruses in chickens in Hong Kong. Picornaviruses were detected in 87 cloacal and 7 tracheal samples from 93 of 900 chickens by reverse transcription-PCR, with their partial 3D gene sequences forming five distinct clades (I to V) among known picornaviruses. Analysis of eight genomes from different clades revealed seven different picornaviruses, including six novel picornavirus species (ChPV1 from clade I, ChPV2 and ChPV3 from clade II, ChPV4 and ChPV5 from clade III, ChGV1 from clade IV) and one existing species ( from clade V). The six novel chicken picornavirus genomes exhibited distinct phylogenetic positions and genome features different from related picornaviruses, supporting their classification as separate species. Moreover, ChPV1 may potentially belong to a novel genus, with low sequence homologies to related picornaviruses, especially in the P1 and P2 regions, including the predicted L and 2A proteins. Nevertheless, these novel picornaviruses were most closely related to picornaviruses of other avian species (ChPV1 related to , ChPV2 and ChPV3 to and , ChPV4 and ChPV5 to A, ChGV1 to ). Furthermore, ChPV5 represented a potential recombinant picornavirus, with its P2 and P3 regions possibly originating from . Chickens are an important reservoir for diverse picornaviruses that may cross avian species barriers through mutation or recombination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066597-0
2014-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1929.html?itemId=/content/journal/jgv/10.1099/vir.0.066597-0&mimeType=html&fmt=ahah

References

  1. Adams M. J., King A. M. Q., Carstens E. B.. ( 2013;). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). . Arch Virol 158:, 2023–2030. [CrossRef][PubMed]
    [Google Scholar]
  2. Bazan J. F., Fletterick R. J.. ( 1988;). Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. . Proc Natl Acad Sci U S A 85:, 7872–7876. [CrossRef][PubMed]
    [Google Scholar]
  3. Belsham G. J.. ( 2009;). Divergent picornavirus IRES elements. . Virus Res 139:, 183–192. [CrossRef][PubMed]
    [Google Scholar]
  4. Benschop K. S., de Vries M., Minnaar R. P., Stanway G., van der Hoek L., Wolthers K. C., Simmonds P.. ( 2010;). Comprehensive full-length sequence analyses of human parechoviruses: diversity and recombination. . J Gen Virol 91:, 145–154. [CrossRef][PubMed]
    [Google Scholar]
  5. Boros Á., Nemes C., Pankovics P., Kapusinszky B., Delwart E., Reuter G.. ( 2012a;). Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). . J Gen Virol 93:, 2171–2182. [CrossRef][PubMed]
    [Google Scholar]
  6. Boros A., Pankovics P., Knowles N. J., Reuter G.. ( 2012b;). Natural interspecies recombinant bovine/porcine enterovirus in sheep. . J Gen Virol 93:, 1941–1951. [CrossRef][PubMed]
    [Google Scholar]
  7. Boros A., Nemes C., Pankovics P., Kapusinszky B., Delwart E., Reuter G.. ( 2013;). Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. . J Gen Virol 94:, 1496–1509. [CrossRef][PubMed]
    [Google Scholar]
  8. Bullman S., Kearney K., O’Mahony M., Kelly L., Whyte P., Fanning S., Morgan J. G.. ( 2014;). Identification and genetic characterization of a novel picornavirus from chickens. . J Gen Virol 95:, 1094–1103.. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen H. H., Kong W. P., Roos R. P.. ( 1995;). The leader peptide of Theiler’s murine encephalomyelitis virus is a zinc-binding protein. . J Virol 69:, 8076–8078.[PubMed]
    [Google Scholar]
  10. Chen Y., Liang W., Yang S., Wu N., Gao H., Sheng J., Yao H., Wo J., Fang Q.. & other authors ( 2013;). Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. . Lancet 381:, 1916–1925. [CrossRef][PubMed]
    [Google Scholar]
  11. Chiu C. Y., Greninger A. L., Kanada K., Kwok T., Fischer K. F., Runckel C., Louie J. K., Glaser C. A., Yagi S.. & other authors ( 2008;). Identification of cardioviruses related to Theiler’s murine encephalomyelitis virus in human infections. . Proc Natl Acad Sci U S A 105:, 14124–14129. [CrossRef][PubMed]
    [Google Scholar]
  12. Chow M., Newman J. F., Filman D., Hogle J. M., Rowlands D. J., Brown F.. ( 1987;). Myristylation of picornavirus capsid protein VP4 and its structural significance. . Nature 327:, 482–486. [CrossRef][PubMed]
    [Google Scholar]
  13. Cohen J. I., Ticehurst J. R., Purcell R. H., Buckler-White A., Baroudy B. M.. ( 1987;). Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. . J Virol 61:, 50–59.[PubMed]
    [Google Scholar]
  14. Drexler J. F., Luna L. K., Stöcker A., Almeida P. S., Ribeiro T. C., Petersen N., Herzog P., Pedroso C., Huppertz H. I.. & other authors ( 2008;). Circulation of 3 lineages of a novel Saffold cardiovirus in humans. . Emerg Infect Dis 14:, 1398–1405. [CrossRef][PubMed]
    [Google Scholar]
  15. Drexler J. F., Gloza-Rausch F., Glende J., Corman V. M., Muth D., Goettsche M., Seebens A., Niedrig M., Pfefferle S.. & other authors ( 2010;). Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. . J Virol 84:, 11336–11349. [CrossRef][PubMed]
    [Google Scholar]
  16. Dvorak C. M. T., Hall D. J., Hill M., Riddle M., Pranter A., Dillman J., Deibel M., Palmenberg A. C.. ( 2001;). Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation. . Virology 290:, 261–271. [CrossRef][PubMed]
    [Google Scholar]
  17. Farkas T., Fey B., Hargitt E. III, Parcells M., Ladman B., Murgia M., Saif Y.. ( 2012;). Molecular detection of novel picornaviruses in chickens and turkeys. . Virus Genes 44:, 262–272. [CrossRef][PubMed]
    [Google Scholar]
  18. Fernández-Miragall O., López de Quinto S., Martínez-Salas E.. ( 2009;). Relevance of RNA structure for the activity of picornavirus IRES elements. . Virus Res 139:, 172–182. [CrossRef][PubMed]
    [Google Scholar]
  19. Fitzgerald K. D., Semler B. L.. ( 2011;). Re-localization of cellular protein SRp20 during poliovirus infection: bridging a viral IRES to the host cell translation apparatus. . PLoS Pathog 7:, e1002127. [CrossRef][PubMed]
    [Google Scholar]
  20. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V.. ( 1989a;). Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. . FEBS Lett 243:, 103–114. [CrossRef][PubMed]
    [Google Scholar]
  21. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M.. ( 1989b;). Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. . Nucleic Acids Res 17:, 4713–4730. [CrossRef][PubMed]
    [Google Scholar]
  22. Gorbalenya A. E., Koonin E. V., Wolf Y. I.. ( 1990;). A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. . FEBS Lett 262:, 145–148. [CrossRef][PubMed]
    [Google Scholar]
  23. Gorbalenya A. E., Koonin E. V., Lai M. M.. ( 1991;). Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. . FEBS Lett 288:, 201–205. [CrossRef][PubMed]
    [Google Scholar]
  24. Gradi A., Foeger N., Strong R., Svitkin Y. V., Sonenberg N., Skern T., Belsham G. J.. ( 2004;). Cleavage of eukaryotic translation initiation factor 4GII within foot-and-mouth disease virus-infected cells: identification of the L-protease cleavage site in vitro. . J Virol 78:, 3271–3278. [CrossRef][PubMed]
    [Google Scholar]
  25. Hämmerle T., Molla A., Wimmer E.. ( 1992;). Mutational analysis of the proposed FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage and might be determinants of a function distinct from proteolytic activity. . J Virol 66:, 6028–6034.[PubMed]
    [Google Scholar]
  26. Hellen C. U., de Breyne S.. ( 2007;). A distinct group of hepacivirus/pestivirus-like internal ribosomal entry sites in members of diverse picornavirus genera: evidence for modular exchange of functional noncoding RNA elements by recombination. . J Virol 81:, 5850–5863. [CrossRef][PubMed]
    [Google Scholar]
  27. Hinton T. M., Ross-Smith N., Warner S., Belsham G. J., Crabb B. S.. ( 2002;). Conservation of L and 3C proteinase activities across distantly related aphthoviruses. . J Gen Virol 83:, 3111–3121.[PubMed]
    [Google Scholar]
  28. Holtz L. R., Finkbeiner S. R., Zhao G., Kirkwood C. D., Girones R., Pipas J. M., Wang D.. ( 2009;). Klassevirus 1, a previously undescribed member of the family Picornaviridae, is globally widespread. . Virol J 6:, 86. [CrossRef][PubMed]
    [Google Scholar]
  29. Honkavuori K. S., Shivaprasad H. L., Briese T., Street C., Hirschberg D. L., Hutchison S. K., Lipkin W. I.. ( 2011;). Novel picornavirus in turkey poults with hepatitis, California, USA. . Emerg Infect Dis 17:, 480–487. [CrossRef][PubMed]
    [Google Scholar]
  30. Huang H. I., Weng K. F., Shih S. R.. ( 2012;). Viral and host factors that contribute to pathogenicity of enterovirus 71. . Future Microbiol 7:, 467–479. [CrossRef][PubMed]
    [Google Scholar]
  31. Hughes P. J., Stanway G.. ( 2000;). The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. . J Gen Virol 81:, 201–207.[PubMed]
    [Google Scholar]
  32. Jones M. S., Lukashov V. V., Ganac R. D., Schnurr D. P.. ( 2007;). Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. . J Clin Microbiol 45:, 2144–2150. [CrossRef][PubMed]
    [Google Scholar]
  33. Kamer G., Argos P.. ( 1984;). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. . Nucleic Acids Res 12:, 7269–7282. [CrossRef][PubMed]
    [Google Scholar]
  34. Kapoor A., Victoria J., Simmonds P., Slikas E., Chieochansin T., Naeem A., Shaukat S., Sharif S., Alam M. M.. & other authors ( 2008a;). A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. . Proc Natl Acad Sci U S A 105:, 20482–20487. [CrossRef][PubMed]
    [Google Scholar]
  35. Kapoor A., Victoria J., Simmonds P., Wang C., Shafer R. W., Nims R., Nielsen O., Delwart E.. ( 2008b;). A highly divergent picornavirus in a marine mammal. . J Virol 82:, 311–320. [CrossRef][PubMed]
    [Google Scholar]
  36. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T.. & other authors ( 2012;). Picornaviridae. . In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 855–880. Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J... San Diego, CA:: Elsevier;.
    [Google Scholar]
  37. Lau S. K. P., Woo P. C. Y., Li K. S., Huang Y., Tsoi H. W., Wong B. H., Wong S. S. Y., Leung S. Y., Chan K. H., Yuen K. Y.. ( 2005;). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. . Proc Natl Acad Sci U S A 102:, 14040–14045. [CrossRef][PubMed]
    [Google Scholar]
  38. Lau S. K. P., Yip C. C. Y., Tsoi H. W., Lee R. A., So L. Y., Lau Y. L., Chan K. H., Woo P. C. Y., Yuen K. Y.. ( 2007;). Clinical features and complete genome characterization of a distinct human rhinovirus (HRV) genetic cluster, probably representing a previously undetected HRV species, HRV-C, associated with acute respiratory illness in children. . J Clin Microbiol 45:, 3655–3664. [CrossRef][PubMed]
    [Google Scholar]
  39. Lau S. K. P., Woo P. C. Y., Tse H., Fu C. T. Y., Au W. K., Chen X. C., Tsoi H. W., Tsang T. H. F., Chan J. S. Y.. & other authors ( 2008;). Identification of novel porcine and bovine parvoviruses closely related to human parvovirus 4. . J Gen Virol 89:, 1840–1848. [CrossRef][PubMed]
    [Google Scholar]
  40. Lau S. K. P., Yip C. C. Y., Lin A. W. C., Lee R. A., So L. Y., Lau Y. L., Chan K. H., Woo P. C. Y., Yuen K. Y.. ( 2009;). Clinical and molecular epidemiology of human rhinovirus C in children and adults in Hong Kong reveals a possible distinct human rhinovirus C subgroup. . J Infect Dis 200:, 1096–1103. [CrossRef][PubMed]
    [Google Scholar]
  41. Lau S. K. P., Woo P. C. Y., Lai K. K. Y., Huang Y., Yip C. C. Y., Shek C. T., Lee P., Lam C. S. F., Chan K. H., Yuen K. Y.. ( 2011;). Complete genome analysis of three novel picornaviruses from diverse bat species. . J Virol 85:, 8819–8828. [CrossRef][PubMed]
    [Google Scholar]
  42. Lau S. K., Woo P. C., Yip C. C., Choi G. K., Wu Y., Bai R., Fan R. Y., Lai K. K., Chan K. H., Yuen K. Y.. ( 2012;). Identification of a novel feline picornavirus from the domestic cat. . J Virol 86:, 395–405. [CrossRef][PubMed]
    [Google Scholar]
  43. Li L., Victoria J., Kapoor A., Blinkova O., Wang C., Babrzadeh F., Mason C. J., Pandey P., Triki H.. & other authors ( 2009;). A novel picornavirus associated with gastroenteritis. . J Virol 83:, 12002–12006. [CrossRef][PubMed]
    [Google Scholar]
  44. Lindberg A. M., Johansson S.. ( 2002;). Phylogenetic analysis of Ljungan virus and A-2 plaque virus, new members of the Picornaviridae.. Virus Res 85:, 61–70. [CrossRef][PubMed]
    [Google Scholar]
  45. Marvil P., Knowles N. J., Mockett A. P., Britton P., Brown T. D., Cavanagh D.. ( 1999;). Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. . J Gen Virol 80:, 653–662.[PubMed]
    [Google Scholar]
  46. McErlean P., Shackelton L. A., Andrews E., Webster D. R., Lambert S. B., Nissen M. D., Sloots T. P., Mackay I. M.. ( 2008;). Distinguishing molecular features and clinical characteristics of a putative new rhinovirus species, human rhinovirus C (HRV C). . PLoS ONE 3:, e1847. [CrossRef][PubMed]
    [Google Scholar]
  47. Peiris M., Yuen K. Y., Leung C. W., Chan K. H., Ip P. L., Lai R. W., Orr W. K., Shortridge K. F.. ( 1999;). Human infection with influenza H9N2. . Lancet 354:, 916–917. [CrossRef][PubMed]
    [Google Scholar]
  48. Racaniello V. R., Baltimore D.. ( 1981;). Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. . Proc Natl Acad Sci U S A 78:, 4887–4891. [CrossRef][PubMed]
    [Google Scholar]
  49. Roberts P. J., Belsham G. J.. ( 1995;). Identification of critical amino acids within the foot-and-mouth disease virus leader protein, a cysteine protease. . Virology 213:, 140–146. [CrossRef][PubMed]
    [Google Scholar]
  50. Ryan M. D., Flint M.. ( 1997;). Virus-encoded proteinases of the picornavirus super-group. . J Gen Virol 78:, 699–723.[PubMed]
    [Google Scholar]
  51. Shih S. R., Stollar V., Li M. L.. ( 2011;). Host factors in enterovirus 71 replication. . J Virol 85:, 9658–9666. [CrossRef][PubMed]
    [Google Scholar]
  52. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  53. Tracy S., Chapman N. M., Drescher K. M., Kono K., Tapprich W.. ( 2006;). Evolution of virulence in picornaviruses. . Curr Top Microbiol Immunol 299:, 193–209.[PubMed]
    [Google Scholar]
  54. Tseng C. H., Tsai H. J.. ( 2007;). Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. . Virus Res 129:, 104–114. [CrossRef][PubMed]
    [Google Scholar]
  55. Tseng C. H., Knowles N. J., Tsai H. J.. ( 2007;). Molecular analysis of duck hepatitis virus type 1 indicates that it should be assigned to a new genus. . Virus Res 123:, 190–203. [CrossRef][PubMed]
    [Google Scholar]
  56. Woo P. C. Y., Lau S. K. P., Li K. S. M., Poon R. W. S., Wong B. H., Tsoi H. W., Yip B. C. K., Huang Y., Chan K. H., Yuen K. Y.. ( 2006a;). Molecular diversity of coronaviruses in bats. . Virology 351:, 180–187. [CrossRef][PubMed]
    [Google Scholar]
  57. Woo P. C., Lau S. K., Yuen K. Y.. ( 2006b;). Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. . Curr Opin Infect Dis 19:, 401–407. [CrossRef][PubMed]
    [Google Scholar]
  58. Woo P. C. Y., Lau S. K. P., Huang Y., Lam C. S. F., Poon R. W. S., Tsoi H. W., Lee P., Tse H., Chan A. S.. & other authors ( 2010;). Comparative analysis of six genome sequences of three novel picornaviruses, turdiviruses 1, 2 and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and Paraturdivirus, in the family Picornaviridae.. J Gen Virol 91:, 2433–2448. [CrossRef][PubMed]
    [Google Scholar]
  59. Woo P. C., Lau S. K., Choi G. K., Huang Y., Teng J. L., Tsoi H. W., Tse H., Yeung M. L., Chan K. H.. & other authors ( 2012;). Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. . J Virol 86:, 2797–2808. [CrossRef][PubMed]
    [Google Scholar]
  60. Yamashita T., Sakae K., Tsuzuki H., Suzuki Y., Ishikawa N., Takeda N., Miyamura T., Yamazaki S.. ( 1998;). Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. . J Virol 72:, 8408–8412.[PubMed]
    [Google Scholar]
  61. Yip C. C. Y., Lau S. K. P., Zhou B., Zhang M. X., Tsoi H. W., Chan K. H., Chen X. C., Woo P. C. Y., Yuen K. Y.. ( 2010;). Emergence of enterovirus 71 “double-recombinant” strains belonging to a novel genotype D originating from southern China: first evidence for combination of intratypic and intertypic recombination events in EV71. . Arch Virol 155:, 1413–1424. [CrossRef][PubMed]
    [Google Scholar]
  62. Yip C. C., Lau S. K., Lo J. Y., Chan K. H., Woo P. C., Yuen K. Y.. ( 2013;). Genetic characterization of EV71 isolates from 2004 to 2010 reveals predominance and persistent circulation of the newly proposed genotype D and recent emergence of a distinct lineage of subgenotype C2 in Hong Kong. . Virol J 10:, 222. [CrossRef][PubMed]
    [Google Scholar]
  63. Yu Y., Abaeva I. S., Marintchev A., Pestova T. V., Hellen C. U.. ( 2011;). Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. . Nucleic Acids Res 39:, 4851–4865. [CrossRef][PubMed]
    [Google Scholar]
  64. Yuen K. Y., Chan P. K., Peiris M., Tsang D. N., Que T. L., Shortridge K. F., Cheung P. T., To W. K., Ho E. T.. & other authors ( 1998;). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. . Lancet 351:, 467–471. [CrossRef][PubMed]
    [Google Scholar]
  65. Zuker M.. ( 2003;). Mfold web server for nucleic acid folding and hybridization prediction. . Nucleic Acids Res 31:, 3406–3415. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066597-0
Loading
/content/journal/jgv/10.1099/vir.0.066597-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error