1887

Abstract

Papillomaviruses are a family of slowly evolving DNA viruses and their evolution is commonly linked to that of their host species. However, whilst bovine papillomavirus-1 (BPV-1) primarily causes warts in its natural host, the cow, it can also cause locally aggressive and invasive skin tumours in equids, known as sarcoids, and thus provides a rare contemporary example of cross-species transmission of a papillomavirus. Here, we describe the first phylogenetic analysis of BPV-1 in equine sarcoids to our knowledge, allowing us to explore the evolutionary history of BPV-1 and investigate its cross-species association with equids. A phylogenetic analysis of the BPV-1 transcriptional promoter region (the long control region or LCR) was conducted on 15 bovine and 116 equine samples from four continents. Incorporating previous estimates for evolutionary rates in papillomavirus implied that the genetic diversity in the LCR variants was ancient and predated domestication of both equids and cattle. The phylogeny demonstrated geographical segregation into an ancestral group (African, South American and Australian samples), and a more recently derived, largely European clade. Whilst our data are consistent with BPV-1 originating in cattle, we found evidence of multiple, probably relatively recent, cross-species transmission events into horses. We also demonstrated the high prevalence of one particular sequence variant (variant 20), and suggest this may indicate that this variant shows a fitness advantage in equids. Although strong host specificity remains the norm in papillomaviruses, our results demonstrate that exceptions to this rule exist and can become epidemiologically relevant.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066589-0
2014-12-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/12/2748.html?itemId=/content/journal/jgv/10.1099/vir.0.066589-0&mimeType=html&fmt=ahah

References

  1. Ajmone-Marsan P. , Garcia J. F. , Lenstra J. A. . The Globaldiv Consortium ( 2010; ). On the origin of cattle: how aurochs became cattle and colonized the world. . Evol Anthropol 19:, 148–157. [CrossRef]
    [Google Scholar]
  2. Amtmann E. , Muller H. , Sauer G. . ( 1980; ). Equine connective tissue tumors contain unintegrated bovine papillomavirus DNA. . J Virol 35:, 962–964.
    [Google Scholar]
  3. Bernard H.-U. . ( 2013; ). Taxonomy and phylogeny of papillomaviruses: an overview and recent developments. . Infect Genet Evol 18:, 357–361. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bernard H.-U. , Calleja-Macias I. E. , Dunn S. T. . ( 2006; ). Genome variation of human papillomavirus types: phylogenetic and medical implications. . Int J Cancer 118:, 1071–1076. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bogaert L. , Van Poucke M. , De Baere C. , Dewulf J. , Peelman L. , Ducatelle R. , Gasthuys F. , Martens A. . ( 2007; ). Bovine papillomavirus load and mRNA expression, cell proliferation and p53 expression in four clinical types of equine sarcoid. . J Gen Virol 88:, 2155–2161. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boiron M. , Levy J. P. , Thomas M. , Friedmann J. C. , Bernard J. . ( 1964; ). Some properties of Bovine Papilloma Virus. . Nature 201:, 423–424. [CrossRef]
    [Google Scholar]
  7. Brandt S. , Haralambus R. , Shafti-Keramat S. , Steinborn R. , Stanek C. , Kirnbauer R. . ( 2008; ). A subset of equine sarcoids harbours BPV-1 DNA in a complex with L1 major capsid protein. . Virology 375:, 433–441. [CrossRef] [PubMed]
    [Google Scholar]
  8. Campo M. S. . ( 2002; ). Animal models of papilloma virus pathogenesis. . Virus Res 89:, 249–261. [CrossRef]
    [Google Scholar]
  9. Campo M. S. . (ed.) ( 2006; ). Papillomavirus Research: From Natural History to Vaccines and Beyond. Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  10. Chan S.-Y. , Bernard H.-U. , Ong C.-K. , Chan S.-P. , Hofmann B. , Delius H. . ( 1992; ). Phylogenetic analysis of 48 papillomavirus types and 28 subtypes and variants: a showcase for the molecular evolution of DNA viruses. . J Virol 66:, 5714–5725.[PubMed]
    [Google Scholar]
  11. Chan S. Y. , Ostrow R. S. , Faras A. J. , Bernard H. U. . ( 1997; ). Genital papillomaviruses (PVs) and epidermodysplasia verruciformis PVs occur in the same monkey species: implications for PV evolution. . Virology 228:, 213–217. [CrossRef] [PubMed]
    [Google Scholar]
  12. Drummond A. J. , Rambaut A. . ( 2007; ). beast: Bayesian evolutionary analysis by sampling trees. . BMC Evol Biol 7:, 214. [CrossRef] [PubMed]
    [Google Scholar]
  13. Drummond A. J. , Rambaut A. , Shapiro B. , Pybus O. G. . ( 2005; ). Bayesian coalescent inference of past population dynamics from molecular sequences. . Mol Biol Evol 22:, 1185–1192. [CrossRef] [PubMed]
    [Google Scholar]
  14. Drummond A. J. , Ho S. Y. W. , Phillips M. J. , Rambaut A. . ( 2006; ). Relaxed phylogenetics and dating with confidence. . PLoS Biol 4:, e88. [CrossRef] [PubMed]
    [Google Scholar]
  15. Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Heled, J., Kearse, M., Moir, R., Stones-Havas, S. & other authors. (2010). Geneious v5.5. http://www.geneious.com.
  16. Finlay M. , Yuan Z. Q. , Burden F. , Trawford A. , Morgan I. M. , Campo M. S. , Nasir L. . ( 2009; ). The detection of Bovine Papillomavirus type 1 DNA in flies. . Virus Res 144:, 315–317. [CrossRef] [PubMed]
    [Google Scholar]
  17. García-Pérez R. , Ibáñez C. , Godínez J. M. , Aréchiga N. , Garin I. , Pérez-Suárez G. , de Paz O. , Juste J. , Echevarría J. E. , Bravo I. G. . ( 2014; ). Novel papillomaviruses in free-ranging Iberian bats: no virus-host co-evolution, no strict host specificity, and hints for recombination. . Genome Biol Evol 6:, 94–104. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gottschling M. , Stamatakis A. , Nindl I. , Stockfleth E. , Alonso A. , Bravo I. G. . ( 2007; ). Multiple evolutionary mechanisms drive papillomavirus diversification. . Mol Biol Evol 24:, 1242–1258. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gottschling M. , Göker M. , Stamatakis A. , Bininda-Emonds O. R. P. , Nindl I. , Bravo I. G. . ( 2011; ). Quantifying the phylodynamic forces driving papillomavirus evolution. . Mol Biol Evol 28:, 2101–2113. [CrossRef] [PubMed]
    [Google Scholar]
  20. Guindon S. , Gascuel O. . ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef] [PubMed]
    [Google Scholar]
  21. Halpern A. L. . ( 2000; ). Comparison of papillomavirus and immunodeficiency virus evolutionary patterns in the context of a papillomavirus vaccine. . J Clin Virol 19:, 43–56. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hartl B. , Hainisch E. K. , Shafti-Keramat S. , Kirnbauer R. , Corteggio A. , Borzacchiello G. , Tober R. , Kainzbauer C. , Pratscher B. , Brandt S. . ( 2011; ). Inoculation of young horses with bovine papillomavirus type 1 virions leads to early infection of PBMCs prior to pseudo-sarcoid formation. . J Gen Virol 92:, 2437–2445. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ho S. Y. W. , Larson G. . ( 2006; ). Molecular clocks: when times are a-changin’. . Trends Genet 22:, 79–83. [CrossRef] [PubMed]
    [Google Scholar]
  24. Huelsenbeck J. P. , Ronquist F. , Nielsen R. , Bollback J. P. . ( 2001; ). Bayesian inference of phylogeny and its impact on evolutionary biology. . Science 294:, 2310–2314. [CrossRef] [PubMed]
    [Google Scholar]
  25. Jackson C. . ( 1936; ). The incidence and pathology of tumours in domesticated animals in South Africa. . Oonderspoort J Vet Sci 6:, 375–385.
    [Google Scholar]
  26. Kidney B. A. , Berrocal A. . ( 2008; ). Sarcoids in two captive tapirs (Tapirus bairdii): clinical, pathological and molecular study. . Vet Dermatol 19:, 380–384. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  28. Kimura B. , Marshall F. B. , Chen S. , Rosenbom S. , Moehlman P. D. , Tuross N. , Sabin R. C. , Peters J. , Barich B. . & other authors ( 2011; ). Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. . Proc Biol Sci 278:, 50–57. [CrossRef] [PubMed]
    [Google Scholar]
  29. Knottenbelt D. . ( 2005; ). A suggested clinical classification for the equine sarcoid. . Clin Tech Equine Pract 4:, 278–295. [CrossRef]
    [Google Scholar]
  30. Marais H. J. , Page P. C. . ( 2011; ). Treatment of equine sarcoid in seven Cape mountain zebra (Equus zebra zebra). . J Wildl Dis 47:, 917–924. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nasir L. , Brandt S. . ( 2013; ). Papillomavirus associated diseases of the horse. . Vet Microbiol 167:, 159–167. [CrossRef] [PubMed]
    [Google Scholar]
  32. Nasir L. , Campo M. S. . ( 2008; ). Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. . Vet Dermatol 19:, 243–254. [CrossRef] [PubMed]
    [Google Scholar]
  33. Nasir L. , Gault E. , Morgan I. M. , Chambers G. , Ellsmore V. , Campo M. S. . ( 2007; ). Identification and functional analysis of sequence variants in the long control region and the E2 open reading frame of bovine papillomavirus type 1 isolated from equine sarcoids. . Virology 364:, 355–361. [CrossRef] [PubMed]
    [Google Scholar]
  34. Olson C. Jr , Cook R. H. . ( 1951; ). Cutaneous sarcoma-like lesions of the horse caused by the agent of bovine papilloma. . Proc Soc Exp Biol Med 77:, 281–284. [CrossRef] [PubMed]
    [Google Scholar]
  35. Posada D. . ( 2008; ). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef] [PubMed]
    [Google Scholar]
  36. R Core Team ( 2013; ). r: A language and environment for statistical computing. Vienna, Austria:: R Foundation for Statistical Computing;.
    [Google Scholar]
  37. Ragland W. L. , McLaughlin C. A. , Spencer G. R. . ( 1970; ). Attempts to relate bovine papilloma virus to the cause of equine sarcoid: horses, donkeys and calves inoculated with equine sarcoid extracts. . Equine Vet J 2:, 168–172. [CrossRef]
    [Google Scholar]
  38. Rector A. , Lemey P. , Tachezy R. , Mostmans S. , Ghim S. J. , Van Doorslaer K. , Roelke M. , Bush M. , Montali R. J. . & other authors ( 2007; ). Ancient papillomavirus-host co-speciation in Felidae. . Genome Biol 8:, R57. [CrossRef] [PubMed]
    [Google Scholar]
  39. Reid S. W. , Smith K. T. , Jarrett W. F. . ( 1994; ). Detection, cloning and characterisation of papillomaviral DNA present in sarcoid tumours of Equus asinus . . Vet Rec 135:, 430–432. [CrossRef] [PubMed]
    [Google Scholar]
  40. Robl M. G. , Olson C. . ( 1968; ). Oncogenic action of Bovine Papilloma Virus in hamsters. . Cancer Res 28:, 1596–1604.
    [Google Scholar]
  41. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef] [PubMed]
    [Google Scholar]
  42. Roperto S. , Russo V. , Ozkul A. , Corteggio A. , Sepici-Dincel A. , Catoi C. , Esposito I. , Riccardi M. G. , Urraro C. . & other authors ( 2013; ). Productive infection of bovine papillomavirus type 2 in the urothelial cells of naturally occurring urinary bladder tumors in cattle and water buffaloes. . PLoS ONE 8:, e62227. [CrossRef] [PubMed]
    [Google Scholar]
  43. Shadan F. F. , Villarreal L. P. . ( 1993; ). Coevolution of persistently infecting small DNA viruses and their hosts linked to host-interactive regulatory domains. . Proc Natl Acad Sci U S A 90:, 4117–4121. [CrossRef] [PubMed]
    [Google Scholar]
  44. Shah S. D. , Doorbar J. , Goldstein R. A. . ( 2010; ). Analysis of host-parasite incongruence in papillomavirus evolution using importance sampling. . Mol Biol Evol 27:, 1301–1314. [CrossRef] [PubMed]
    [Google Scholar]
  45. Silvestre O. , Borzacchiello G. , Nava D. , Iovane G. , Russo V. , Vecchio D. , D’Ausilio F. , Gault E. A. , Campo M. S. , Paciello O. . ( 2009; ). Bovine papillomavirus type 1 DNA and E5 oncoprotein expression in water buffalo fibropapillomas. . Vet Pathol 46:, 636–641. [CrossRef] [PubMed]
    [Google Scholar]
  46. Tomita Y. , Literak I. , Ogawa T. , Jin Z. , Shirasawa H. . ( 2007; ). Complete genomes and phylogenetic positions of bovine papillomavirus type 8 and a variant type from a European bison. . Virus Genes 35:, 243–249. [CrossRef] [PubMed]
    [Google Scholar]
  47. Vilà C. , Leonard J. A. , Gotherstrom A. , Marklund S. , Sandberg K. , Liden K. , Wayne R. K. , Ellegren H. . ( 2001; ). Widespread origins of domestic horse lineages. . Science 291:, 474–477. [CrossRef] [PubMed]
    [Google Scholar]
  48. Villiers E.-M. , Fauquet C. , Broker T. R. , Bernard H.-U. , zur Hausen H. . ( 2004; ). Classification of papillomaviruses. . Virology 324:, 17–27. [CrossRef]
    [Google Scholar]
  49. Yuan Z. , Gallagher A. , Gault E. A. , Campo M. S. , Nasir L. . ( 2007; ). Bovine papillomavirus infection in equine sarcoids and in bovine bladder cancers. . Vet J 174:, 599–604. [CrossRef] [PubMed]
    [Google Scholar]
  50. Yuan Z. Q. , Gault E. A. , Gobeil P. , Nixon C. , Campo M. S. , Nasir L. . ( 2008; ). Establishment and characterization of equine fibroblast cell lines transformed in vivo and in vitro by BPV-1: model systems for equine sarcoids. . Virology 373:, 352–361. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066589-0
Loading
/content/journal/jgv/10.1099/vir.0.066589-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error