1887

Abstract

Human cardioviruses or Saffold viruses (SAFVs) of the family are newly emerging viruses whose genetic and phenotypic diversity are poorly understood. We report here the full genome sequence of 11 SAFV genotypes from Pakistan and Afghanistan, along with a re-evaluation of their genetic diversity and recombination. We detected 88 SAFV from stool samples of 943 acute flaccid paralysis cases using reverse transcriptase-PCR targeting the 5′ untranslated region (UTR). Further characterization based on complete VP1 analysis revealed 71 SAFVs belonging to 11 genotypes, including three previously unidentified genotypes. SAFV showed high genetic diversity and recombination based on phylogenetic, pairwise distance distributions and recombination mapping analyses performed herein. Phylogenies based on non-structural and UTRs were highly incongruent indicating frequent recombination events among SAFVs. We improved the SAFV genotyping classification criteria by determining new VP1 thresholds based on the principles used for the classification of enteroviruses. For genotype assignment, we propose a threshold of 23 and 10 % divergence for VP1 nucleotide and amino acid sequences, respectively. Other members of the species , such as Thera virus and Theiler’s murine encephalomyelitis virus, are difficult to classify in the same species as SAFV, because they are genetically distinct from SAFV, with 41–56 % aa pairwise distances. The new genetic information obtained in this study will improve our understanding of the evolution and classification of SAFV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066498-0
2014-09-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1945.html?itemId=/content/journal/jgv/10.1099/vir.0.066498-0&mimeType=html&fmt=ahah

References

  1. Abed Y., Boivin G.. ( 2008;). New Saffold cardioviruses in 3 children, Canada. . Emerg Infect Dis 14:, 834–836. [CrossRef][PubMed]
    [Google Scholar]
  2. Adams M. J., King A. M. Q., Carstens E. B.. ( 2013;). Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013). . Arch Virol 158:, 2023–2030. [CrossRef][PubMed]
    [Google Scholar]
  3. Benschop K. S., de Vries M., Minnaar R. P., Stanway G., van der Hoek L., Wolthers K. C., Simmonds P.. ( 2010;). Comprehensive full-length sequence analyses of human parechoviruses: diversity and recombination. . J Gen Virol 91:, 145–154. [CrossRef][PubMed]
    [Google Scholar]
  4. Blinkova O., Kapoor A., Victoria J., Jones M., Wolfe N., Naeem A., Shaukat S., Sharif S., Alam M. M.. & other authors ( 2009;). Cardioviruses are genetically diverse and cause common enteric infections in South Asian children. . J Virol 83:, 4631–4641. [CrossRef][PubMed]
    [Google Scholar]
  5. Blomqvist S., Lappalainen M., Paananen A., Ylipaasto P., Roivainen M.. ( 2012;). Isolation of saffold virus type 2 in green monkey kidney cells. . J Med Virol 84:, 1497–1500. [CrossRef][PubMed]
    [Google Scholar]
  6. Brahic M., Bureau J. F., Michiels T.. ( 2005;). The genetics of the persistent infection and demyelinating disease caused by Theiler’s virus. . Annu Rev Microbiol 59:, 279–298. [CrossRef][PubMed]
    [Google Scholar]
  7. Casals J.. ( 1963;). Immunological characterization of Vilyuisk human encephalomyelitis virus. . Nature 200:, 339–341. [CrossRef][PubMed]
    [Google Scholar]
  8. Chiu C. Y., Greninger A. L., Kanada K., Kwok T., Fischer K. F., Runckel C., Louie J. K., Glaser C. A., Yagi S.. & other authors ( 2008;). Identification of cardioviruses related to Theiler’s murine encephalomyelitis virus in human infections. . Proc Natl Acad Sci U S A 105:, 14124–14129. [CrossRef][PubMed]
    [Google Scholar]
  9. Chua K. B., Voon K., Yu M., Ali W. N., Kasri A. R., Wang L. F.. ( 2011;). Saffold virus infection in children, Malaysia, 2009. . Emerg Infect Dis 17:, 1562–1564.[PubMed]
    [Google Scholar]
  10. Dietz V., Andrus J., Olivé J. M., Cochi S., de Quadros C.. ( 1995;). Epidemiology and clinical characteristics of acute flaccid paralysis associated with non-polio enterovirus isolation: the experience in the Americas. . Bull World Health Organ 73:, 597–603.[PubMed]
    [Google Scholar]
  11. Drexler J. F., Luna L. K., Stöcker A., Almeida P. S., Ribeiro T. C., Petersen N., Herzog P., Pedroso C., Huppertz H. I.. & other authors ( 2008;). Circulation of 3 lineages of a novel Saffold cardiovirus in humans. . Emerg Infect Dis 14:, 1398–1405. [CrossRef][PubMed]
    [Google Scholar]
  12. Drexler J. F., Baumgarte S., de Souza Luna L. K., Stöcker A., Almeida P. S., Ribeiro T. C. M., Petersen N., Herzog P., Pedroso C.. & other authors ( 2010;). Genomic features and evolutionary constraints in Saffold-like cardioviruses. . J Gen Virol 91:, 1418–1427. [CrossRef][PubMed]
    [Google Scholar]
  13. Galama J., Lanke K., Zoll J., Roivainen M., van Kuppeveld F.. ( 2011;). Seroepidemiology of Saffold cardiovirus type 2. . Emerg Infect Dis 17:, 1572–1573.[PubMed]
    [Google Scholar]
  14. Higgins D. G., Thompson J. D., Gibson T. J.. ( 1996;). Using clustal for multiple sequence alignments. . Methods Enzymol 266:, 383–402. [CrossRef][PubMed]
    [Google Scholar]
  15. Himeda T., Ohara Y.. ( 2012;). Saffold virus, a novel human Cardiovirus with unknown pathogenicity. . J Virol 86:, 1292–1296. [CrossRef][PubMed]
    [Google Scholar]
  16. Himeda T., Hosomi T., Asif N., Shimizu H., Okuwa T., Muraki Y., Ohara Y.. ( 2011;). The preparation of an infectious full-length cDNA clone of Saffold virus. . Virol J 8:, 110. [CrossRef][PubMed]
    [Google Scholar]
  17. Itagaki T., Abiko C., Ikeda T., Aoki Y., Seto J., Mizuta K., Ahiko T., Tsukagoshi H., Nagano M.. & other authors ( 2010;). Sequence and phylogenetic analyses of Saffold cardiovirus from children with exudative tonsillitis in Yamagata, Japan. . Scand J Infect Dis 42:, 950–952. [CrossRef][PubMed]
    [Google Scholar]
  18. Itagaki T., Abiko C., Aoki Y., Ikeda T., Mizuta K., Noda M., Kimura H., Matsuzaki Y.. ( 2011;). Saffold cardiovirus infection in children associated with respiratory disease and its similarity to coxsackievirus infection. . Pediatr Infect Dis J 30:, 680–683. [CrossRef][PubMed]
    [Google Scholar]
  19. Jones M. S., Lukashov V. V., Ganac R. D., Schnurr D. P.. ( 2007;). Discovery of a novel human picornavirus in a stool sample from a pediatric patient presenting with fever of unknown origin. . J Clin Microbiol 45:, 2144–2150. [CrossRef][PubMed]
    [Google Scholar]
  20. Khamrin P., Chaimongkol N., Nantachit N., Okitsu S., Ushijima H., Maneekarn N.. ( 2011;). Saffold cardioviruses in children with diarrhea, Thailand. . Emerg Infect Dis 17:, 1150–1152. [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  22. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T.. & other authors ( 2012;). Picornaviridae. . In: Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses, pp. 855–880 Edited by King A.M.Q., Adams M.J., Carstens E.B., Lefkowitz E.J... San Diego:: Elsevier;.
    [Google Scholar]
  23. Kosakovsky Pond S. L., Posada D., Gravenor M. B., Woelk C. H., Frost S. D. W.. ( 2006a;). GARD: a genetic algorithm for recombination detection. . Bioinformatics 22:, 3096–3098. [CrossRef][PubMed]
    [Google Scholar]
  24. Kosakovsky Pond S. L., Posada D., Gravenor M. B., Woelk C. H., Frost S. D. W.. ( 2006b;). Automated phylogenetic detection of recombination using a genetic algorithm. . Mol Biol Evol 23:, 1891–1901. [CrossRef][PubMed]
    [Google Scholar]
  25. Lauber C., Gorbalenya A. E.. ( 2012;). Partitioning the genetic diversity of a virus family: approach and evaluation through a case study of picornaviruses. . J Virol 86:, 3890–3904. [CrossRef][PubMed]
    [Google Scholar]
  26. Liang Z., Kumar A. S., Jones M. S., Knowles N. J., Lipton H. L.. ( 2008;). Phylogenetic analysis of the species Theilovirus: emerging murine and human pathogens. . J Virol 82:, 11545–11554. [CrossRef][PubMed]
    [Google Scholar]
  27. Lole K. S., Bollinger R. C., Paranjape R. S., Gadkari D., Kulkarni S. S., Novak N. G., Ingersoll R., Sheppard H. W., Ray S. C.. ( 1999;). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. . J Virol 73:, 152–160.[PubMed]
    [Google Scholar]
  28. Lukashev A. N.. ( 2005;). Role of recombination in evolution of enteroviruses. . Rev Med Virol 15:, 157–167. [CrossRef][PubMed]
    [Google Scholar]
  29. Lukashev A. N.. ( 2010;). Recombination among picornaviruses. . Rev Med Virol 20:, 327–337. [CrossRef][PubMed]
    [Google Scholar]
  30. Lukashev A. N., Lashkevich V. A., Ivanova O. E., Koroleva G. A., Hinkkanen A. E., Ilonen J.. ( 2005;). Recombination in circulating Human enterovirus B: independent evolution of structural and non-structural genome regions. . J Gen Virol 86:, 3281–3290. [CrossRef][PubMed]
    [Google Scholar]
  31. McIntyre C. L., McWilliam Leitch E. C., Savolainen-Kopra C., Hovi T., Simmonds P.. ( 2010;). Analysis of genetic diversity and sites of recombination in human rhinovirus species C. . J Virol 84:, 10297–10310. [CrossRef][PubMed]
    [Google Scholar]
  32. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  33. Nielsen A. C., Böttiger B., Banner J., Hoffmann T., Nielsen L. P.. ( 2012;). Serious invasive Saffold virus infections in children, 2009. . Emerg Infect Dis 18:, 7–12. [CrossRef][PubMed]
    [Google Scholar]
  34. Oberste M. S., Maher K., Kilpatrick D. R., Pallansch M. A.. ( 1999;). Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. . J Virol 73:, 1941–1948.[PubMed]
    [Google Scholar]
  35. Ohsawa K., Watanabe Y., Miyata H., Sato H.. ( 2003;). Genetic analysis of a Theiler-like virus isolated from rats. . Comp Med 53:, 191–196.[PubMed]
    [Google Scholar]
  36. Oleszak E. L., Chang J. R., Friedman H., Katsetos C. D., Platsoucas C. D.. ( 2004;). Theiler’s virus infection: a model for multiple sclerosis. . Clin Microbiol Rev 17:, 174–207. [CrossRef][PubMed]
    [Google Scholar]
  37. Pritchard A. E., Strom T., Lipton H. L.. ( 1992;). Nucleotide sequence identifies Vilyuisk virus as a divergent Theiler’s virus. . Virology 191:, 469–472. [CrossRef][PubMed]
    [Google Scholar]
  38. Ren L., Gonzalez R., Xiao Y., Xu X., Chen L., Vernet G., Paranhos-Baccala G., Jin Q., Wang J.. ( 2009;). Saffold cardiovirus in children with acute gastroenteritis, Beijing, China. . Emerg Infect Dis 15:, 1509–1511. [CrossRef][PubMed]
    [Google Scholar]
  39. Ren L., Xiao Y., Li J., Chen L., Zhang J., Vernet G., Wang J.. ( 2013;). Multiple genomic recombination events in the evolution of saffold cardiovirus. . PLoS ONE 8:, e74947. [CrossRef][PubMed]
    [Google Scholar]
  40. Roos R. P.. ( 2010;). Pathogenesis of Theiler’s murine encephalomyelitis virus-induced disease. . Clin Exp Neuroimmunol 1:, 70–78. [CrossRef]
    [Google Scholar]
  41. Savolainen C., Blomqvist S., Mulders M. N., Hovi T.. ( 2002;). Genetic clustering of all 102 human rhinovirus prototype strains: serotype 87 is close to human enterovirus 70. . J Gen Virol 83:, 333–340.[PubMed]
    [Google Scholar]
  42. Simmonds P., McIntyre C., Savolainen-Kopra C., Tapparel C., Mackay I. M., Hovi T.. ( 2010;). Proposals for the classification of human rhinovirus species C into genotypically assigned types. . J Gen Virol 91:, 2409–2419. [CrossRef][PubMed]
    [Google Scholar]
  43. Takahashi K., Nei M.. ( 2000;). Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. . Mol Biol Evol 17:, 1251–1258. [CrossRef][PubMed]
    [Google Scholar]
  44. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  45. Tsukagoshi H., Masuda Y., Mizutani T., Mizuta K., Saitoh M., Morita Y., Nishina A., Kozawa K., Noda M.. & other authors ( 2010;). Sequencing and phylogenetic analyses of Saffold cardiovirus (SAFV) genotype 3 isolates from children with upper respiratory infection in Gunma, Japan. . Jpn J Infect Dis 63:, 378–380.[PubMed]
    [Google Scholar]
  46. Tsukagoshi H., Mizuta K., Abiko C., Itagaki T., Yoshizumi M., Kobayashi M., Kuroda M., Kozawa K., Noda M.. & other authors ( 2011;). The impact of Saffold cardiovirus in patients with acute respiratory infections in Yamagata, Japan. . Scand J Infect Dis 43:, 669–671. [CrossRef][PubMed]
    [Google Scholar]
  47. Wang C. Y. T., Greer R. M., Delwart E., Sloots T. P., Mackay I. M.. ( 2012;). A newly designed real-time RT-PCR for SAFV detects SAFV-2 and SAFV-3 in the respiratory tracts of ill children during 2011. . J Clin Virol 55:, 173–176. [CrossRef][PubMed]
    [Google Scholar]
  48. Wisdom A., McWilliam Leitch E. C., Gaunt E., Harvala H., Simmonds P.. ( 2009;). Screening respiratory samples for detection of human rhinoviruses (HRVs) and enteroviruses: comprehensive VP4-VP2 typing reveals high incidence and genetic diversity of HRV species C. . J Clin Microbiol 47:, 3958–3967. [CrossRef][PubMed]
    [Google Scholar]
  49. World Health Organization ( 2012;). Tracking progress towards global polio eradication, 2010–2011. . Wkly Epidemiol Rec 87:, 153–160.[PubMed]
    [Google Scholar]
  50. Xu Z. Q., Cheng W. X., Qi H. M., Cui S. X., Jin Y., Duan Z. J.. ( 2009;). New Saffold cardiovirus in children, China. . Emerg Infect Dis 15:, 993–994. [CrossRef][PubMed]
    [Google Scholar]
  51. Zoll J., Erkens Hulshof S., Lanke K., Verduyn Lunel F., Melchers W. J., Schoondermark-van de Ven E., Roivainen M., Galama J. M., van Kuppeveld F. J.. ( 2009;). Saffold virus, a human Theiler’s-like cardiovirus, is ubiquitous and causes infection early in life. . PLoS Pathog 5:, e1000416. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066498-0
Loading
/content/journal/jgv/10.1099/vir.0.066498-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error