1887

Abstract

Human cytomegalovirus (HCMV) infection and reactivation are a major cause of morbidity in immune-suppressed patients. Interestingly, epidemiological studies have shown that patients administered the mammalian target of rapamycin (mTOR) inhibitor, sirolimus (rapamycin), exhibit more favourable outcomes, suggestive of activity against HCMV . Given its relative lack of activity against lytic infection, it is postulated that rapamycin inhibits HCMV reactivation. Here, we showed that rapamycin administered acutely or chronically has little impact on induction of immediate early (IE) gene expression in experimentally latent dendritic cells or cells from naturally latent individuals. Furthermore, we extended these observations to include other inhibitors of mTORC1 and mTORC 2, which similarly have minimal effects on induction of IE gene expression from latency. Taken together, these data suggest that favourable outcomes associated with sirolimus are attributable to indirect effects that influence HCMV reactivation, rather than a direct mechanistic action against HCMV itself.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.066332-0
2014-10-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2260.html?itemId=/content/journal/jgv/10.1099/vir.0.066332-0&mimeType=html&fmt=ahah

References

  1. Alwine J. C.. ( 2008;). Modulation of host cell stress responses by human cytomegalovirus. . Curr Top Microbiol Immunol 325:, 263–279.[PubMed]
    [Google Scholar]
  2. Antin J. H., Kim H. T., Cutler C., Ho V. T., Lee S. J., Miklos D. B., Hochberg E. P., Wu C. J., Alyea E. P., Soiffer R. J.. ( 2003;). Sirolimus, tacrolimus, and low-dose methotrexate for graft-versus-host disease prophylaxis in mismatched related donor or unrelated donor transplantation. . Blood 102:, 1601–1605. [CrossRef][PubMed]
    [Google Scholar]
  3. Armand P., Gannamaneni S., Kim H. T., Cutler C. S., Ho V. T., Koreth J., Alyea E. P., LaCasce A. S., Jacobsen E. D.. & other authors ( 2008;). Improved survival in lymphoma patients receiving sirolimus for graft-versus-host disease prophylaxis after allogeneic hematopoietic stem-cell transplantation with reduced-intensity conditioning. . J Clin Oncol 26:, 5767–5774. [CrossRef][PubMed]
    [Google Scholar]
  4. Baines C. P., Kaiser R. A., Purcell N. H., Blair N. S., Osinska H., Hambleton M. A., Brunskill E. W., Sayen M. R., Gottlieb R. A.. & other authors ( 2005;). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. . Nature 434:, 658–662. [CrossRef][PubMed]
    [Google Scholar]
  5. Barilli A., Visigalli R., Sala R., Gazzola G. C., Parolari A., Tremoli E., Bonomini S., Simon A., Closs E. I.. & other authors ( 2008;). In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. . Cardiovasc Res 78:, 563–571. [CrossRef][PubMed]
    [Google Scholar]
  6. Bhagwat S. V., Gokhale P. C., Crew A. P., Cooke A., Yao Y., Mantis C., Kahler J., Workman J., Bittner M.. & other authors ( 2011;). Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin. . Mol Cancer Ther 10:, 1394–1406. [CrossRef][PubMed]
    [Google Scholar]
  7. Blankenberg S., Rupprecht H. J., Bickel C., Espinola-Klein C., Rippin G., Hafner G., Ossendorf M., Steinhagen K., Meyer J.. ( 2001;). Cytomegalovirus infection with interleukin-6 response predicts cardiac mortality in patients with coronary artery disease. . Circulation 103:, 2915–2921. [CrossRef][PubMed]
    [Google Scholar]
  8. Chakrabarti S., Mackinnon S., Chopra R., Kottaridis P. D., Peggs K., O’Gorman P., Chakraverty R., Marshall T., Osman H.. & other authors ( 2002;). High incidence of cytomegalovirus infection after nonmyeloablative stem cell transplantation: potential role of Campath-1H in delaying immune reconstitution. . Blood 99:, 4357–4363. [CrossRef][PubMed]
    [Google Scholar]
  9. Chakrabarti S., Milligan D. W., Brown J., Osman H., Vipond I. B., Pamphilon D. H., Marks D. I.. ( 2004;). Influence of cytomegalovirus (CMV) sero-positivity on CMV infection, lymphocyte recovery and non-CMV infections following T-cell-depleted allogeneic stem cell transplantation: a comparison between two T-cell depletion regimens. . Bone Marrow Transplant 33:, 197–204. [CrossRef][PubMed]
    [Google Scholar]
  10. Clippinger A. J., Maguire T. G., Alwine J. C.. ( 2011;). Human cytomegalovirus infection maintains mTOR activity and its perinuclear localization during amino acid deprivation. . J Virol 85:, 9369–9376. [CrossRef][PubMed]
    [Google Scholar]
  11. Cook C. H., Trgovcich J., Zimmerman P. D., Zhang Y., Sedmak D. D.. ( 2006;). Lipopolysaccharide, tumor necrosis factor alpha, or interleukin-1beta triggers reactivation of latent cytomegalovirus in immunocompetent mice. . J Virol 80:, 9151–9158. [CrossRef][PubMed]
    [Google Scholar]
  12. Corton J. M., Gillespie J. G., Hawley S. A., Hardie D. G.. ( 1995;). 5-Aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells?. Eur J Biochem 229:, 558–565. [CrossRef][PubMed]
    [Google Scholar]
  13. Demopoulos L., Polinsky M., Steele G., Mines D., Blum M., Caulfield M., Adamkovic A., Liu Q., Harler M. B.. & other authors ( 2008;). Reduced risk of cytomegalovirus infection in solid organ transplant recipients treated with sirolimus: a pooled analysis of clinical trials. . Transplant Proc 40:, 1407–1410. [CrossRef][PubMed]
    [Google Scholar]
  14. Ghassemieh B., Ahya V. N., Baz M. A., Valentine V. G., Arcasoy S. M., Love R. B., Seethamraju H., Alex C. G., Bag R.. & other authors ( 2013;). Decreased incidence of cytomegalovirus infection with sirolimus in a post hoc randomized, multicenter study in lung transplantation. . J Heart Lung Transplant 32:, 701–706. [CrossRef][PubMed]
    [Google Scholar]
  15. Hargett D., Shenk T. E.. ( 2010;). Experimental human cytomegalovirus latency in CD14+ monocytes. . Proc Natl Acad Sci U S A 107:, 20039–20044. [CrossRef][PubMed]
    [Google Scholar]
  16. Heitman J., Movva N. R., Hall M. N.. ( 1991;). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. . Science 253:, 905–909. [CrossRef][PubMed]
    [Google Scholar]
  17. Hester J., Schiopu A., Nadig S. N., Wood K. J.. ( 2012;). Low-dose rapamycin treatment increases the ability of human regulatory T cells to inhibit transplant arteriosclerosis in vivo. . Am J Transplant 12:, 2008–2016. [CrossRef][PubMed]
    [Google Scholar]
  18. Huang M. M., Kew V. G., Jestice K., Wills M. R., Reeves M. B.. ( 2012;). Efficient human cytomegalovirus reactivation is maturation dependent in the Langerhans dendritic cell lineage and can be studied using a CD14+ experimental latency model. . J Virol 86:, 8507–8515. [CrossRef][PubMed]
    [Google Scholar]
  19. Humar A., St Louis P., Mazzulli T., McGeer A., Lipton J., Messner H., MacDonald K. S.. ( 1999;). Elevated serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients. . J Infect Dis 179:, 484–488. [CrossRef][PubMed]
    [Google Scholar]
  20. Jackson S. E., Mason G. M., Wills M. R.. ( 2011;). Human cytomegalovirus immunity and immune evasion. . Virus Res 157:, 151–160. [CrossRef][PubMed]
    [Google Scholar]
  21. Jost S., Altfeld M.. ( 2013;). Control of human viral infections by natural killer cells. . Annu Rev Immunol 31:, 163–194. [CrossRef][PubMed]
    [Google Scholar]
  22. Kim D. H., Sarbassov D. D., Ali S. M., King J. E., Latek R. R., Erdjument-Bromage H., Tempst P., Sabatini D. M.. ( 2002;). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. . Cell 110:, 163–175. [CrossRef][PubMed]
    [Google Scholar]
  23. Kudchodkar S. B., Yu Y., Maguire T. G., Alwine J. C.. ( 2004;). Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. . J Virol 78:, 11030–11039. [CrossRef][PubMed]
    [Google Scholar]
  24. Kudchodkar S. B., Yu Y., Maguire T. G., Alwine J. C.. ( 2006;). Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. . Proc Natl Acad Sci U S A 103:, 14182–14187. [CrossRef][PubMed]
    [Google Scholar]
  25. Kudchodkar S. B., Del Prete G. Q., Maguire T. G., Alwine J. C.. ( 2007;). AMPK-mediated inhibition of mTOR kinase is circumvented during immediate-early times of human cytomegalovirus infection. . J Virol 81:, 3649–3651. [CrossRef][PubMed]
    [Google Scholar]
  26. Lamming D. W., Ye L., Katajisto P., Goncalves M. D., Saitoh M., Stevens D. M., Davis J. G., Salmon A. B., Richardson A.. & other authors ( 2012;). Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. . Science 335:, 1638–1643. [CrossRef][PubMed]
    [Google Scholar]
  27. Lamming D. W., Ye L., Sabatini D. M., Baur J. A.. ( 2013;). Rapalogs and mTOR inhibitors as anti-aging therapeutics. . J Clin Invest 123:, 980–989. [CrossRef][PubMed]
    [Google Scholar]
  28. Legendre C., Pascual M.. ( 2008;). Improving outcomes for solid-organ transplant recipients at risk from cytomegalovirus infection: late-onset disease and indirect consequences. . Clin Infect Dis 46:, 732–740. [CrossRef][PubMed]
    [Google Scholar]
  29. Li J., Spletter M. L., Johnson D. A., Wright L. S., Svendsen C. N., Johnson J. A.. ( 2005;). Rotenone-induced caspase 9/3-independent and -dependent cell death in undifferentiated and differentiated human neural stem cells. . J Neurochem 92:, 462–476. [CrossRef][PubMed]
    [Google Scholar]
  30. Limaye A. P., Kirby K. A., Rubenfeld G. D., Leisenring W. M., Bulger E. M., Neff M. J., Gibran N. S., Huang M. L., Santo Hayes T. K.. & other authors ( 2008;). Cytomegalovirus reactivation in critically ill immunocompetent patients. . JAMA 300:, 413–422. [CrossRef][PubMed]
    [Google Scholar]
  31. Lin T. S., Zahrieh D., Weller E., Alyea E. P., Antin J. H., Soiffer R. J.. ( 2002;). Risk factors for cytomegalovirus reactivation after CD6+ T-cell-depleted allogeneic bone marrow transplantation. . Transplantation 74:, 49–54. [CrossRef][PubMed]
    [Google Scholar]
  32. Ljungman P., Brand R., Einsele H., Frassoni F., Niederwieser D., Cordonnier C.. ( 2003;). Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. . Blood 102:, 4255–4260. [CrossRef][PubMed]
    [Google Scholar]
  33. Loewith R., Jacinto E., Wullschleger S., Lorberg A., Crespo J. L., Bonenfant D., Oppliger W., Jenoe P., Hall M. N.. ( 2002;). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. . Mol Cell 10:, 457–468. [CrossRef][PubMed]
    [Google Scholar]
  34. Luo Z., Saha A. K., Xiang X., Ruderman N. B.. ( 2005;). AMPK, the metabolic syndrome and cancer. . Trends Pharmacol Sci 26:, 69–76. [CrossRef][PubMed]
    [Google Scholar]
  35. Marty F. M., Bryar J., Browne S. K., Schwarzberg T., Ho V. T., Bassett I. V., Koreth J., Alyea E. P., Soiffer R. J.. & other authors ( 2007;). Sirolimus-based graft-versus-host disease prophylaxis protects against cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation: a cohort analysis. . Blood 110:, 490–500. [CrossRef][PubMed]
    [Google Scholar]
  36. McSharry B. P., Tomasec P., Neale M. L., Wilkinson G. W.. ( 2003;). The most abundantly transcribed human cytomegalovirus gene (beta 2.7) is non-essential for growth in vitro. . J Gen Virol 84:, 2511–2516. [CrossRef][PubMed]
    [Google Scholar]
  37. Moorman N. J., Shenk T.. ( 2010;). Rapamycin-resistant mTORC1 kinase activity is required for herpesvirus replication. . J Virol 84:, 5260–5269. [CrossRef][PubMed]
    [Google Scholar]
  38. Nichols W. G., Corey L., Gooley T., Davis C., Boeckh M.. ( 2002;). High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. . J Infect Dis 185:, 273–282. [CrossRef][PubMed]
    [Google Scholar]
  39. Poglitsch M., Weichhart T., Hecking M., Werzowa J., Katholnig K., Antlanger M., Krmpotic A., Jonjic S., Hörl W. H.. & other authors ( 2012;). CMV late phase-induced mTOR activation is essential for efficient virus replication in polarized human macrophages. . Am J Transplant 12:, 1458–1468. [CrossRef][PubMed]
    [Google Scholar]
  40. Prösch S., Wuttke R., Krüger D. H., Volk H. D.. ( 2002;). NF-kappaB–a potential therapeutic target for inhibition of human cytomegalovirus (re)activation?. Biol Chem 383:, 1601–1609. [CrossRef][PubMed]
    [Google Scholar]
  41. Rameshwar P., Gascón P.. ( 1992;). Release of interleukin-1 and interleukin-6 from human monocytes by antithymocyte globulin: requirement for de novo synthesis. . Blood 80:, 2531–2538.[PubMed]
    [Google Scholar]
  42. Reeves M. B., Compton T.. ( 2011;). Inhibition of inflammatory interleukin-6 activity via extracellular signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human cytomegalovirus reactivation from dendritic cells. . J Virol 85:, 12750–12758. [CrossRef][PubMed]
    [Google Scholar]
  43. Reeves M. B., Davies A. A., McSharry B. P., Wilkinson G. W., Sinclair J. H.. ( 2007;). Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. . Science 316:, 1345–1348. [CrossRef][PubMed]
    [Google Scholar]
  44. Revello M. G., Gerna G.. ( 2004;). Pathogenesis and prenatal diagnosis of human cytomegalovirus infection. . J Clin Virol 29:, 71–83. [CrossRef][PubMed]
    [Google Scholar]
  45. Rölle A., Olweus J.. ( 2009;). Dendritic cells in cytomegalovirus infection: viral evasion and host countermeasures. . APMIS 117:, 413–426. [CrossRef][PubMed]
    [Google Scholar]
  46. Roux E., Dumont-Girard F., Starobinski M., Siegrist C. A., Helg C., Chapuis B., Roosnek E.. ( 2000;). Recovery of immune reactivity after T-cell-depleted bone marrow transplantation depends on thymic activity. . Blood 96:, 2299–2303.[PubMed]
    [Google Scholar]
  47. Sabatini D. M., Erdjument-Bromage H., Lui M., Tempst P., Snyder S. H.. ( 1994;). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. . Cell 78:, 35–43. [CrossRef][PubMed]
    [Google Scholar]
  48. San Segundo D., Fernández-Fresnedo G., Gago M., Beares I., Ruiz-Criado J., González M., Ruiz J. C., Gómez-Alamillo C., Arias M., López-Hoyos M.. ( 2010;). Number of peripheral blood regulatory T cells and lymphocyte activation at 3 months after conversion to mTOR inhibitor therapy. . Transplant Proc 42:, 2871–2873. [CrossRef][PubMed]
    [Google Scholar]
  49. Sarbassov D. D., Ali S. M., Sabatini D. M.. ( 2005;). Growing roles for the mTOR pathway. . Curr Opin Cell Biol 17:, 596–603. [CrossRef][PubMed]
    [Google Scholar]
  50. Sarbassov D. D., Ali S. M., Sengupta S., Sheen J. H., Hsu P. P., Bagley A. F., Markhard A. L., Sabatini D. M.. ( 2006;). Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. . Mol Cell 22:, 159–168. [CrossRef][PubMed]
    [Google Scholar]
  51. Smith C., Khanna R.. ( 2013;). Immune regulation of human herpesviruses and its implications for human transplantation. . Am J Transplant 13: (Suppl 3), 9–23, quiz 23. [CrossRef][PubMed]
    [Google Scholar]
  52. Söderberg-Nauclér C., Fish K. N., Nelson J. A.. ( 1997;). Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. . Cell 91:, 119–126. [CrossRef][PubMed]
    [Google Scholar]
  53. Turnquist H. R., Cardinal J., Macedo C., Rosborough B. R., Sumpter T. L., Geller D. A., Metes D., Thomson A. W.. ( 2010;). mTOR and GSK-3 shape the CD4+ T-cell stimulatory and differentiation capacity of myeloid DCs after exposure to LPS. . Blood 115:, 4758–4769. [CrossRef][PubMed]
    [Google Scholar]
  54. Vézina C., Kudelski A., Sehgal S. N.. ( 1975;). Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. . J Antibiot (Tokyo) 28:, 721–726. [CrossRef][PubMed]
    [Google Scholar]
  55. Vollenbröker B., George B., Wolfgart M., Saleem M. A., Pavenstädt H., Weide T.. ( 2009;). mTOR regulates expression of slit diaphragm proteins and cytoskeleton structure in podocytes. . Am J Physiol Renal Physiol 296:, F418–F426. [CrossRef][PubMed]
    [Google Scholar]
  56. Watkins R. R., Lemonovich T. L., Razonable R. R.. ( 2012;). Immune response to CMV in solid organ transplant recipients: current concepts and future directions. . Expert Rev Clin Immunol 8:, 383–393. [CrossRef][PubMed]
    [Google Scholar]
  57. Yuan J., Liu X., Wu A. W., McGonagill P. W., Keller M. J., Galle C. S., Meier J. L.. ( 2009;). Breaking human cytomegalovirus major immediate-early gene silence by vasoactive intestinal peptide stimulation of the protein kinase A-CREB-TORC2 signaling cascade in human pluripotent embryonal NTera2 cells. . J Virol 83:, 6391–6403. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.066332-0
Loading
/content/journal/jgv/10.1099/vir.0.066332-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error