1887

Abstract

Group A rotaviruses, members of the family , are a major cause of infantile acute gastroenteritis. The rotavirus genome consists of 11 dsRNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. It has been shown that some rearranged segments are preferentially encapsidated into viral progenies after serial passages in cell culture. Based on this characteristic, a reverse genetics system was used previously to introduce exogenous segment 7 rearrangements into an infectious rotavirus. This study extends this reverse genetics system to RNA segments 5 and 11. Transfection of exogenous rotavirus rearranged RNA segment 5 or 11 into cells infected with a WT helper rotavirus (bovine strain RF) resulted in subsequent gene rearrangements in the viral progeny. Whilst recombinant viruses were rescued with an exogenous rearranged segment 11, the exogenous segment was modified by a secondary rearrangement. The occurrence of spontaneous rearrangements of WT or exogenous segments is a major hindrance to the use of this reverse genetics approach.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065573-0
2014-09-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/2089.html?itemId=/content/journal/jgv/10.1099/vir.0.065573-0&mimeType=html&fmt=ahah

References

  1. Alam M. M., Kobayashi N., Ishino M., Nagashima S., Paul S. K., Chawla-Sarkar M., Krishnan T., Naik T. N.. ( 2008;). Identical rearrangement of NSP3 genes found in three independently isolated virus clones derived from mixed infection and multiple passages of rotaviruses. . Arch Virol 153:, 555–559. [CrossRef][PubMed]
    [Google Scholar]
  2. Ballard A., McCrae M. A., Desselberger U.. ( 1992;). Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. . J Gen Virol 73:, 633–638. [CrossRef][PubMed]
    [Google Scholar]
  3. Bányai K., Bogdán A., Domonkos G., Kisfali P., Molnár P., Tóth A., Melegh B., Martella V., Gentsch J. R., Szucs G.. ( 2009;). Genetic diversity and zoonotic potential of human rotavirus strains, 2003–2006, Hungary. . J Med Virol 81:, 362–370. [CrossRef][PubMed]
    [Google Scholar]
  4. Bellinzoni R., Mattion N., Vallejos L., La Torre J. L., Scodeller E. A.. ( 1987;). Atypical rotavirus in chickens in Argentina. . Res Vet Sci 43:, 130–131.[PubMed]
    [Google Scholar]
  5. Boyce M., Celma C. C., Roy P.. ( 2008;). Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. . J Virol 82:, 8339–8348. [CrossRef][PubMed]
    [Google Scholar]
  6. Cao D., Barro M., Hoshino Y.. ( 2008;). Porcine rotavirus bearing an aberrant gene stemming from an intergenic recombination of the NSP2 and NSP5 genes is defective and interfering. . J Virol 82:, 6073–6077. [CrossRef][PubMed]
    [Google Scholar]
  7. Desselberger U.. ( 1996;). Genome rearrangements of rotaviruses. . Adv Virus Res 46:, 69–95. [CrossRef][PubMed]
    [Google Scholar]
  8. Estes M., Kapikian A.. ( 2007;). Rotavirus. . In Fields Virology, , 5th edn,. pp. 1917–1974. Edited by Knipe D. M., Howley P. M., Griffin R. A., Lamb R. A., Martin M. A., Roizman B., Straus S... Philadelphia, PA:: Wolters Kluwer Health/Lippincott Williams & Wilkins;.
    [Google Scholar]
  9. Gault E., Schnepf N., Poncet D., Servant A., Teran S., Garbarg-Chenon A.. ( 2001;). A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. . J Virol 75:, 7305–7314. [CrossRef][PubMed]
    [Google Scholar]
  10. Giambiagi S., González Rodríguez I., Gómez J., Burrone O.. ( 1994;). A rearranged genomic segment 11 is common to different human rotaviruses. . Arch Virol 136:, 415–421. [CrossRef][PubMed]
    [Google Scholar]
  11. González S. A., Burrone O. R.. ( 1989;). Porcine OSU rotavirus segment II sequence shows common features with the viral gene of human origin. . Nucleic Acids Res 17:, 6402. [CrossRef][PubMed]
    [Google Scholar]
  12. Gorziglia M., Nishikawa K., Fukuhara N.. ( 1989;). Evidence of duplication and deletion in super short segment 11 of rabbit rotavirus Alabama strain. . Virology 170:, 587–590. [CrossRef][PubMed]
    [Google Scholar]
  13. Hundley F., Biryahwaho B., Gow M., Desselberger U.. ( 1985;). Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. . Virology 143:, 88–103. [CrossRef][PubMed]
    [Google Scholar]
  14. Hundley F., McIntyre M., Clark B., Beards G., Wood D., Chrystie I., Desselberger U.. ( 1987;). Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected immunodeficient child. . J Virol 61:, 3365–3372.[PubMed]
    [Google Scholar]
  15. Ishii K., Ueda Y., Matsuo K., Matsuura Y., Kitamura T., Kato K., Izumi Y., Someya K., Ohsu T.. & other authors ( 2002;). Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. . Virology 302:, 433–444. [CrossRef][PubMed]
    [Google Scholar]
  16. Kobayashi T., Antar A. A., Boehme K. W., Danthi P., Eby E. A., Guglielmi K. M., Holm G. H., Johnson E. M., Maginnis M. S.. & other authors ( 2007;). A plasmid-based reverse genetics system for animal double-stranded RNA viruses. . Cell Host Microbe 1:, 147–157. [CrossRef][PubMed]
    [Google Scholar]
  17. Kobayashi T., Ooms L. S., Ikizler M., Chappell J. D., Dermody T. S.. ( 2010;). An improved reverse genetics system for mammalian orthoreoviruses. . Virology 398:, 194–200. [CrossRef][PubMed]
    [Google Scholar]
  18. Kojima K., Taniguchi K., Urasawa T., Urasawa S.. ( 1996;). Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. . Virology 224:, 446–452. [CrossRef][PubMed]
    [Google Scholar]
  19. Kojima K., Taniguchi K., Kawagishi-Kobayashi M., Matsuno S., Urasawa S.. ( 2000;). Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. . Virus Res 67:, 163–171. [CrossRef][PubMed]
    [Google Scholar]
  20. Komoto S., Sasaki J., Taniguchi K.. ( 2006;). Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. . Proc Natl Acad Sci U S A 103:, 4646–4651. [CrossRef][PubMed]
    [Google Scholar]
  21. Komoto S., Kugita M., Sasaki J., Taniguchi K.. ( 2008;). Generation of recombinant rotavirus with an antigenic mosaic of cross-reactive neutralization epitopes on VP4. . J Virol 82:, 6753–6757. [CrossRef][PubMed]
    [Google Scholar]
  22. Matsui S. M., Mackow E. R., Matsuno S., Paul P. S., Greenberg H. B.. ( 1990;). Sequence analysis of gene 11 equivalents from “short” and “super short” strains of rotavirus. . J Virol 64:, 120–124.[PubMed]
    [Google Scholar]
  23. Matsuo E., Roy P.. ( 2009;). Bluetongue virus VP6 acts early in the replication cycle and can form the basis of chimeric virus formation. . J Virol 83:, 8842–8848. [CrossRef][PubMed]
    [Google Scholar]
  24. Matthijnssens J., Rahman M., Martella V., Xuelei Y., De Vos S., De Leener K., Ciarlet M., Buonavoglia C., Van Ranst M.. ( 2006;). Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. . J Virol 80:, 3801–3810. [CrossRef][PubMed]
    [Google Scholar]
  25. Mattion N., González S. A., Burrone O., Bellinzoni R., La Torre J. L., Scodeller E. A.. ( 1988;). Rearrangement of genomic segment 11 in two swine rotavirus strains. . J Gen Virol 69:, 695–698. [CrossRef][PubMed]
    [Google Scholar]
  26. Mattion N. M., Bellinzoni R. C., Blackhall J. O., Estes M. K., Gonzalez S., La Torre J. L., Scodeller E. A.. ( 1990;). Genome rearrangements in porcine rotaviruses: biochemical and biological comparisons between a supershort strain and its standard counterpart. . J Gen Virol 71:, 355–362. [CrossRef][PubMed]
    [Google Scholar]
  27. Méndez E., Arias C. F., López S.. ( 1992;). Genomic rearrangements in human rotavirus strain Wa; analysis of rearranged RNA segment 7. . Arch Virol 125:, 331–338. [CrossRef][PubMed]
    [Google Scholar]
  28. Nakagomi T., Horie Y., Koshimura Y., Greenberg H. B., Nakagomi O.. ( 1999;). Isolation of a human rotavirus strain with a super-short RNA pattern and a new P2 subtype. . J Clin Microbiol 37:, 1213–1216.[PubMed]
    [Google Scholar]
  29. Navarro A., Trask S. D., Patton J. T.. ( 2013;). Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. . J Virol 87:, 6211–6220. [CrossRef][PubMed]
    [Google Scholar]
  30. Oishi I., Kimura T., Murakami T., Haruki K., Yamazaki K., Seto Y., Minekawa Y., Funamoto H.. ( 1991;). Serial observations of chronic rotavirus infection in an immunodeficient child. . Microbiol Immunol 35:, 953–961. [CrossRef][PubMed]
    [Google Scholar]
  31. Palombo E. A., Bugg H. C., Bishop R. F.. ( 1998;). Characterisation of rearranged NSP5 gene of a human rotavirus. . Acta Virol 42:, 55–59.[PubMed]
    [Google Scholar]
  32. Patton J. T., Taraporewala Z., Chen D., Chizhikov V., Jones M., Elhelu A., Collins M., Kearney K., Wagner M.. & other authors ( 2001;). Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. . J Virol 75:, 2076–2086. [CrossRef][PubMed]
    [Google Scholar]
  33. Paul P. S., Lyoo Y. S., Andrews J. J., Hill H. T.. ( 1988;). Isolation of two new serotypes of porcine rotavirus from pigs with diarrhea. . Arch Virol 100:, 139–143. [CrossRef][PubMed]
    [Google Scholar]
  34. Richards J. E., Desselberger U., Lever A. M.. ( 2013;). Experimental pathways towards developing a rotavirus reverse genetics system: synthetic full length rotavirus ssRNAs are neither infectious nor translated in permissive cells. . PLoS ONE 8:, e74328. [CrossRef][PubMed]
    [Google Scholar]
  35. Schnepf N., Deback C., Dehee A., Gault E., Parez N., Garbarg-Chenon A.. ( 2008;). Rearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random. . J Virol 82:, 3689–3696. [CrossRef][PubMed]
    [Google Scholar]
  36. Scott G. E., Tarlow O., McCrae M. A.. ( 1989;). Detailed structural analysis of a genome rearrangement in bovine rotavirus. . Virus Res 14:, 119–127. [CrossRef][PubMed]
    [Google Scholar]
  37. Taniguchi K., Kojima K., Urasawa S.. ( 1996;). Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153-155. . J Virol 70:, 4125–4130.[PubMed]
    [Google Scholar]
  38. Tate J. E., Burton A. H., Boschi-Pinto C., Steele A. D., Duque J., Parashar U. D..WHO-coordinated Global Rotavirus Surveillance Network ( 2012;). 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. . Lancet Infect Dis 12:, 136–141. [CrossRef][PubMed]
    [Google Scholar]
  39. Thouless M. E., DiGiacomo R. F., Neuman D. S.. ( 1986;). Isolation of two lapine rotaviruses: characterization of their subgroup, serotype and RNA electropherotypes. . Arch Virol 89:, 161–170. [CrossRef][PubMed]
    [Google Scholar]
  40. Tian Y., Tarlow O., Ballard A., Desselberger U., McCrae M. A.. ( 1993;). Genomic concatemerization/deletion in rotaviruses: a new mechanism for generating rapid genetic change of potential epidemiological importance. . J Virol 67:, 6625–6632.[PubMed]
    [Google Scholar]
  41. Torres-Vega M. A., González R. A., Duarte M., Poncet D., López S., Arias C. F.. ( 2000;). The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. . J Gen Virol 81:, 821–830.[PubMed]
    [Google Scholar]
  42. Trask S. D., Taraporewala Z. F., Boehme K. W., Dermody T. S., Patton J. T.. ( 2010;). Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. . Proc Natl Acad Sci U S A 107:, 18652–18657. [CrossRef][PubMed]
    [Google Scholar]
  43. Troupin C., Dehée A., Schnuriger A., Vende P., Poncet D., Garbarg-Chenon A.. ( 2010;). Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. . J Virol 84:, 6711–6719. [CrossRef][PubMed]
    [Google Scholar]
  44. Troupin C., Schnuriger A., Duponchel S., Deback C., Schnepf N., Dehee A., Garbarg-Chenon A.. ( 2011;). Rotavirus rearranged genomic RNA segments are preferentially packaged into viruses despite not conferring selective growth advantage to viruses. . PLoS ONE 6:, e20080. [CrossRef][PubMed]
    [Google Scholar]
  45. Westerman L. E., Jiang B., McClure H. M., Snipes-Magaldi L. J., Griffin D. D., Shin G., Gentsch J. R., Glass R. I.. ( 2006;). Isolation and characterization of a new simian rotavirus, YK-1. . Virol J 3:, 40. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065573-0
Loading
/content/journal/jgv/10.1099/vir.0.065573-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error