1887

Abstract

Group A rotaviruses, members of the family , are a major cause of infantile acute gastroenteritis. The rotavirus genome consists of 11 dsRNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. It has been shown that some rearranged segments are preferentially encapsidated into viral progenies after serial passages in cell culture. Based on this characteristic, a reverse genetics system was used previously to introduce exogenous segment 7 rearrangements into an infectious rotavirus. This study extends this reverse genetics system to RNA segments 5 and 11. Transfection of exogenous rotavirus rearranged RNA segment 5 or 11 into cells infected with a WT helper rotavirus (bovine strain RF) resulted in subsequent gene rearrangements in the viral progeny. Whilst recombinant viruses were rescued with an exogenous rearranged segment 11, the exogenous segment was modified by a secondary rearrangement. The occurrence of spontaneous rearrangements of WT or exogenous segments is a major hindrance to the use of this reverse genetics approach.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065573-0
2014-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/2089.html?itemId=/content/journal/jgv/10.1099/vir.0.065573-0&mimeType=html&fmt=ahah

References

  1. Alam M. M., Kobayashi N., Ishino M., Nagashima S., Paul S. K., Chawla-Sarkar M., Krishnan T., Naik T. N. 2008; Identical rearrangement of NSP3 genes found in three independently isolated virus clones derived from mixed infection and multiple passages of rotaviruses. Arch Virol 153:555–559 [View Article][PubMed]
    [Google Scholar]
  2. Ballard A., McCrae M. A., Desselberger U. 1992; Nucleotide sequences of normal and rearranged RNA segments 10 of human rotaviruses. J Gen Virol 73:633–638 [View Article][PubMed]
    [Google Scholar]
  3. Bányai K., Bogdán A., Domonkos G., Kisfali P., Molnár P., Tóth A., Melegh B., Martella V., Gentsch J. R., Szucs G. 2009; Genetic diversity and zoonotic potential of human rotavirus strains, 2003–2006, Hungary. J Med Virol 81:362–370 [View Article][PubMed]
    [Google Scholar]
  4. Bellinzoni R., Mattion N., Vallejos L., La Torre J. L., Scodeller E. A. 1987; Atypical rotavirus in chickens in Argentina. Res Vet Sci 43:130–131[PubMed]
    [Google Scholar]
  5. Boyce M., Celma C. C., Roy P. 2008; Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts. J Virol 82:8339–8348 [View Article][PubMed]
    [Google Scholar]
  6. Cao D., Barro M., Hoshino Y. 2008; Porcine rotavirus bearing an aberrant gene stemming from an intergenic recombination of the NSP2 and NSP5 genes is defective and interfering. J Virol 82:6073–6077 [View Article][PubMed]
    [Google Scholar]
  7. Desselberger U. 1996; Genome rearrangements of rotaviruses. Adv Virus Res 46:69–95 [View Article][PubMed]
    [Google Scholar]
  8. Estes M., Kapikian A. 2007; Rotavirus. In Fields Virology, 5th edn,. pp. 1917–1974 Edited by Knipe D. M., Howley P. M., Griffin R. A., Lamb R. A., Martin M. A., Roizman B., Straus S. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins;
    [Google Scholar]
  9. Gault E., Schnepf N., Poncet D., Servant A., Teran S., Garbarg-Chenon A. 2001; A human rotavirus with rearranged genes 7 and 11 encodes a modified NSP3 protein and suggests an additional mechanism for gene rearrangement. J Virol 75:7305–7314 [View Article][PubMed]
    [Google Scholar]
  10. Giambiagi S., González Rodríguez I., Gómez J., Burrone O. 1994; A rearranged genomic segment 11 is common to different human rotaviruses. Arch Virol 136:415–421 [View Article][PubMed]
    [Google Scholar]
  11. González S. A., Burrone O. R. 1989; Porcine OSU rotavirus segment II sequence shows common features with the viral gene of human origin. Nucleic Acids Res 17:6402 [View Article][PubMed]
    [Google Scholar]
  12. Gorziglia M., Nishikawa K., Fukuhara N. 1989; Evidence of duplication and deletion in super short segment 11 of rabbit rotavirus Alabama strain. Virology 170:587–590 [View Article][PubMed]
    [Google Scholar]
  13. Hundley F., Biryahwaho B., Gow M., Desselberger U. 1985; Genome rearrangements of bovine rotavirus after serial passage at high multiplicity of infection. Virology 143:88–103 [View Article][PubMed]
    [Google Scholar]
  14. Hundley F., McIntyre M., Clark B., Beards G., Wood D., Chrystie I., Desselberger U. 1987; Heterogeneity of genome rearrangements in rotaviruses isolated from a chronically infected immunodeficient child. J Virol 61:3365–3372[PubMed]
    [Google Scholar]
  15. Ishii K., Ueda Y., Matsuo K., Matsuura Y., Kitamura T., Kato K., Izumi Y., Someya K., Ohsu T.other authors 2002; Structural analysis of vaccinia virus DIs strain: application as a new replication-deficient viral vector. Virology 302:433–444 [View Article][PubMed]
    [Google Scholar]
  16. Kobayashi T., Antar A. A., Boehme K. W., Danthi P., Eby E. A., Guglielmi K. M., Holm G. H., Johnson E. M., Maginnis M. S.other authors 2007; A plasmid-based reverse genetics system for animal double-stranded RNA viruses. Cell Host Microbe 1:147–157 [View Article][PubMed]
    [Google Scholar]
  17. Kobayashi T., Ooms L. S., Ikizler M., Chappell J. D., Dermody T. S. 2010; An improved reverse genetics system for mammalian orthoreoviruses. Virology 398:194–200 [View Article][PubMed]
    [Google Scholar]
  18. Kojima K., Taniguchi K., Urasawa T., Urasawa S. 1996; Sequence analysis of normal and rearranged NSP5 genes from human rotavirus strains isolated in nature: implications for the occurrence of the rearrangement at the step of plus strand synthesis. Virology 224:446–452 [View Article][PubMed]
    [Google Scholar]
  19. Kojima K., Taniguchi K., Kawagishi-Kobayashi M., Matsuno S., Urasawa S. 2000; Rearrangement generated in double genes, NSP1 and NSP3, of viable progenies from a human rotavirus strain. Virus Res 67:163–171 [View Article][PubMed]
    [Google Scholar]
  20. Komoto S., Sasaki J., Taniguchi K. 2006; Reverse genetics system for introduction of site-specific mutations into the double-stranded RNA genome of infectious rotavirus. Proc Natl Acad Sci U S A 103:4646–4651 [View Article][PubMed]
    [Google Scholar]
  21. Komoto S., Kugita M., Sasaki J., Taniguchi K. 2008; Generation of recombinant rotavirus with an antigenic mosaic of cross-reactive neutralization epitopes on VP4. J Virol 82:6753–6757 [View Article][PubMed]
    [Google Scholar]
  22. Matsui S. M., Mackow E. R., Matsuno S., Paul P. S., Greenberg H. B. 1990; Sequence analysis of gene 11 equivalents from “short” and “super short” strains of rotavirus. J Virol 64:120–124[PubMed]
    [Google Scholar]
  23. Matsuo E., Roy P. 2009; Bluetongue virus VP6 acts early in the replication cycle and can form the basis of chimeric virus formation. J Virol 83:8842–8848 [View Article][PubMed]
    [Google Scholar]
  24. Matthijnssens J., Rahman M., Martella V., Xuelei Y., De Vos S., De Leener K., Ciarlet M., Buonavoglia C., Van Ranst M. 2006; Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J Virol 80:3801–3810 [View Article][PubMed]
    [Google Scholar]
  25. Mattion N., González S. A., Burrone O., Bellinzoni R., La Torre J. L., Scodeller E. A. 1988; Rearrangement of genomic segment 11 in two swine rotavirus strains. J Gen Virol 69:695–698 [View Article][PubMed]
    [Google Scholar]
  26. Mattion N. M., Bellinzoni R. C., Blackhall J. O., Estes M. K., Gonzalez S., La Torre J. L., Scodeller E. A. 1990; Genome rearrangements in porcine rotaviruses: biochemical and biological comparisons between a supershort strain and its standard counterpart. J Gen Virol 71:355–362 [View Article][PubMed]
    [Google Scholar]
  27. Méndez E., Arias C. F., López S. 1992; Genomic rearrangements in human rotavirus strain Wa; analysis of rearranged RNA segment 7. Arch Virol 125:331–338 [View Article][PubMed]
    [Google Scholar]
  28. Nakagomi T., Horie Y., Koshimura Y., Greenberg H. B., Nakagomi O. 1999; Isolation of a human rotavirus strain with a super-short RNA pattern and a new P2 subtype. J Clin Microbiol 37:1213–1216[PubMed]
    [Google Scholar]
  29. Navarro A., Trask S. D., Patton J. T. 2013; Generation of genetically stable recombinant rotaviruses containing novel genome rearrangements and heterologous sequences by reverse genetics. J Virol 87:6211–6220 [View Article][PubMed]
    [Google Scholar]
  30. Oishi I., Kimura T., Murakami T., Haruki K., Yamazaki K., Seto Y., Minekawa Y., Funamoto H. 1991; Serial observations of chronic rotavirus infection in an immunodeficient child. Microbiol Immunol 35:953–961 [View Article][PubMed]
    [Google Scholar]
  31. Palombo E. A., Bugg H. C., Bishop R. F. 1998; Characterisation of rearranged NSP5 gene of a human rotavirus. Acta Virol 42:55–59[PubMed]
    [Google Scholar]
  32. Patton J. T., Taraporewala Z., Chen D., Chizhikov V., Jones M., Elhelu A., Collins M., Kearney K., Wagner M.other authors 2001; Effect of intragenic rearrangement and changes in the 3′ consensus sequence on NSP1 expression and rotavirus replication. J Virol 75:2076–2086 [View Article][PubMed]
    [Google Scholar]
  33. Paul P. S., Lyoo Y. S., Andrews J. J., Hill H. T. 1988; Isolation of two new serotypes of porcine rotavirus from pigs with diarrhea. Arch Virol 100:139–143 [View Article][PubMed]
    [Google Scholar]
  34. Richards J. E., Desselberger U., Lever A. M. 2013; Experimental pathways towards developing a rotavirus reverse genetics system: synthetic full length rotavirus ssRNAs are neither infectious nor translated in permissive cells. PLoS ONE 8:e74328 [View Article][PubMed]
    [Google Scholar]
  35. Schnepf N., Deback C., Dehee A., Gault E., Parez N., Garbarg-Chenon A. 2008; Rearrangements of rotavirus genomic segment 11 are generated during acute infection of immunocompetent children and do not occur at random. J Virol 82:3689–3696 [View Article][PubMed]
    [Google Scholar]
  36. Scott G. E., Tarlow O., McCrae M. A. 1989; Detailed structural analysis of a genome rearrangement in bovine rotavirus. Virus Res 14:119–127 [View Article][PubMed]
    [Google Scholar]
  37. Taniguchi K., Kojima K., Urasawa S. 1996; Nondefective rotavirus mutants with an NSP1 gene which has a deletion of 500 nucleotides, including a cysteine-rich zinc finger motif-encoding region (nucleotides 156 to 248), or which has a nonsense codon at nucleotides 153-155. J Virol 70:4125–4130[PubMed]
    [Google Scholar]
  38. Tate J. E., Burton A. H., Boschi-Pinto C., Steele A. D., Duque J., Parashar U. D.WHO-coordinated Global Rotavirus Surveillance Network 2012; 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 12:136–141 [View Article][PubMed]
    [Google Scholar]
  39. Thouless M. E., DiGiacomo R. F., Neuman D. S. 1986; Isolation of two lapine rotaviruses: characterization of their subgroup, serotype and RNA electropherotypes. Arch Virol 89:161–170 [View Article][PubMed]
    [Google Scholar]
  40. Tian Y., Tarlow O., Ballard A., Desselberger U., McCrae M. A. 1993; Genomic concatemerization/deletion in rotaviruses: a new mechanism for generating rapid genetic change of potential epidemiological importance. J Virol 67:6625–6632[PubMed]
    [Google Scholar]
  41. Torres-Vega M. A., González R. A., Duarte M., Poncet D., López S., Arias C. F. 2000; The C-terminal domain of rotavirus NSP5 is essential for its multimerization, hyperphosphorylation and interaction with NSP6. J Gen Virol 81:821–830[PubMed]
    [Google Scholar]
  42. Trask S. D., Taraporewala Z. F., Boehme K. W., Dermody T. S., Patton J. T. 2010; Dual selection mechanisms drive efficient single-gene reverse genetics for rotavirus. Proc Natl Acad Sci U S A 107:18652–18657 [View Article][PubMed]
    [Google Scholar]
  43. Troupin C., Dehée A., Schnuriger A., Vende P., Poncet D., Garbarg-Chenon A. 2010; Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses. J Virol 84:6711–6719 [View Article][PubMed]
    [Google Scholar]
  44. Troupin C., Schnuriger A., Duponchel S., Deback C., Schnepf N., Dehee A., Garbarg-Chenon A. 2011; Rotavirus rearranged genomic RNA segments are preferentially packaged into viruses despite not conferring selective growth advantage to viruses. PLoS ONE 6:e20080 [View Article][PubMed]
    [Google Scholar]
  45. Westerman L. E., Jiang B., McClure H. M., Snipes-Magaldi L. J., Griffin D. D., Shin G., Gentsch J. R., Glass R. I. 2006; Isolation and characterization of a new simian rotavirus, YK-1. Virol J 3:40 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065573-0
Loading
/content/journal/jgv/10.1099/vir.0.065573-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error