1887

Abstract

This study examined the potential for cross-species transmission of influenza viruses by comparing the genetic and pathogenic characteristics of H1 avian influenza viruses (AIVs) with different host origins in Korea. Antigenic and phylogenetic analyses of H1 AIVs circulating in Korea provided evidence of genetic similarity between viruses that infect domestic ducks and those that infect wild birds, although there was no relationship between avian and swine viruses. However, there were some relationships between swine and human viral genes. The replication and pathogenicity of the H1 viruses was assessed in chickens, domestic ducks and mice. Viral shedding in chickens was relatively high. Virus was recovered from both oropharyngeal and cloacal swabs up to 5–10 days post-inoculation. The titres of domestic duck viruses in chickens were much higher than those of wild-bird viruses. Both domestic duck and wild-bird viruses replicated poorly in domestic ducks. None of the swine viruses replicated in chickens or domestic ducks; however, six viruses showed relatively high titres in mice, regardless of host origin, and induced clinical signs such as ruffled fur, squatting and weight loss. Thus, although the phylogenetic and antigenic analyses showed no evidence of interspecies transmission between birds and swine, the results suggest that Korean H1 viruses have the potential to cause disease in mammals. Therefore, we should intensify continuous monitoring of avian H1 viruses in mammals and seek to prevent interspecies transmission.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065524-0
2014-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2118.html?itemId=/content/journal/jgv/10.1099/vir.0.065524-0&mimeType=html&fmt=ahah

References

  1. Alexander D. J.. ( 2007;). An overview of the epidemiology of avian influenza. . Vaccine 25:, 5637–5644. [CrossRef][PubMed]
    [Google Scholar]
  2. Amonsin A., Chutinimitkul S., Pariyothorn N., Songserm T., Damrongwantanapokin S., Puranaveja S., Jam-On R., Sae-Heng N., Payungporn S.. & other authors ( 2006;). Genetic characterization of influenza A viruses (H5N1) isolated from 3rd wave of Thailand AI outbreaks. . Virus Res 122:, 194–199. [CrossRef][PubMed]
    [Google Scholar]
  3. Archetti I., Horsfall F. L. Jr. ( 1950;). Persistent antigenic variation of influenza A viruses after incomplete neutralization in ovo with heterologous immune serum. . J Exp Med 92:, 441–462. [CrossRef][PubMed]
    [Google Scholar]
  4. Bateman A. C., Busch M. G., Karasin A. I., Bovin N., Olsen C. W.. ( 2008;). Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for α2,6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. . J Virol 82:, 8204–8209. [CrossRef][PubMed]
    [Google Scholar]
  5. Belser J. A., Bridges C. B., Katz J. M., Tumpey T. M.. ( 2009;). Past, present, and possible future human infection with influenza virus A subtype H7. . Emerg Infect Dis 15:, 859–865. [CrossRef][PubMed]
    [Google Scholar]
  6. Brown I. H.. ( 2001;). The pig as an intermediate host for influenza A viruses between birds and humans. . Int Congr Ser 1219:, 173–178. [CrossRef]
    [Google Scholar]
  7. Brown I. H., Ludwig S., Olsen C. W., Hannoun C., Scholtissek C., Hinshaw V. S., Harris P. A., McCauley J. W., Strong I., Alexander D. J.. ( 1997;). Antigenic and genetic analyses of H1N1 influenza A viruses from European pigs. . J Gen Virol 78:, 553–562.[PubMed]
    [Google Scholar]
  8. Choi J. G., Kang H. M., Kim M. C., Paek M. R., Kim H. R., Kim B. S., Kwon J. H., Kim J. H., Lee Y. J.. ( 2012;). Genetic relationship of H3 subtype avian influenza viruses isolated from domestic ducks and wild birds in Korea and their pathogenic potential in chickens and ducks. . Vet Microbiol 155:, 147–157. [CrossRef][PubMed]
    [Google Scholar]
  9. Halvorson D. A., Kodihalli S., Laudert E., Newman J. A., Pomeroy B. S., Shaw D., Sivanandan V.. ( 1992;). Influenza in turkeys in the USA. , 1987–1991. In: Proceedings of Third International Symposium on Avian Influenza, Madison, WI, USA:, 27–29 May 1992, pp. 33–42.
    [Google Scholar]
  10. Hatta M., Gao P., Halfmann P., Kawaoka Y.. ( 2001;). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. . Science 293:, 1840–1842. [CrossRef][PubMed]
    [Google Scholar]
  11. Hebert P. D., Stoeckle M. Y., Zemlak T. S., Francis C. M.. ( 2004;). Identification of birds through DNA barcodes. . PLoS Biol 2:, e312. [CrossRef][PubMed]
    [Google Scholar]
  12. Hoffmann E., Stech J., Guan Y., Webster R. G., Perez D. R.. ( 2001;). Universal primer set for the full-length amplification of all influenza A viruses. . Arch Virol 146:, 2275–2289. [CrossRef][PubMed]
    [Google Scholar]
  13. Ito T., Kida H., Kawaoka Y.. ( 1996;). Receptors of influenza A viruses. Implications for the role of pigs in the generation of pandemic human influenza viruses. . In Options for the Control of Influenza III, pp. 516–519. Edited by Brown L. E., Hampson A. W., Webster R. G... Amsterdam:: Elsevier Science;.
    [Google Scholar]
  14. Jiao P., Tian G., Li Y., Deng G., Jiang Y., Liu C., Liu W., Bu Z., Kawaoka Y., Chen H.. ( 2008;). A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. . J Virol 82:, 1146–1154. [CrossRef][PubMed]
    [Google Scholar]
  15. Kang H. M., Choi J. G., Kim K. I., Park H. Y., Park C. K., Lee Y. J.. ( 2013;). Genetic and antigenic characteristics of H4 subtype avian influenza viruses in Korea and their pathogenicity in quails, domestic ducks and mice. . J Gen Virol 94:, 30–39. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim H. R., Lee Y. J., Lee K. K., Oem J. K., Kim S. H., Lee M. H., Lee O. S., Park C. K.. ( 2010;). Genetic relatedness of H6 subtype avian influenza viruses isolated from wild birds and domestic ducks in Korea and their pathogenicity in animals. . J Gen Virol 91:, 208–219. [CrossRef][PubMed]
    [Google Scholar]
  17. Kundin W. D.. ( 1970;). Hong Kong A-2 influenza virus infection among swine during a human epidemic in Taiwan. . Nature 228:, 857. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee M. S., Chang P. C., Shien J. H., Cheng M. C., Shieh H. K.. ( 2001;). Identification and subtyping of avian influenza viruses by reverse transcription-PCR. . J Virol Methods 97:, 13–22. [CrossRef][PubMed]
    [Google Scholar]
  19. Lee D. H., Lee H. J., Lee Y. J., Kang H. M., Jeong O. M., Kim M. C., Kwon J. S., Kwon J. H., Kim C. B.. & other authors ( 2010;). DNA barcoding techniques for avian influenza virus surveillance in migratory bird habitats. . J Wildl Dis 46:, 649–654. [CrossRef][PubMed]
    [Google Scholar]
  20. Lindstrom S., Garten R., Balish A., Shu B., Emery S., Berman L., Barnes N., Sleeman K., Gubareva L.. & other authors ( 2012;). Human infections with novel reassortant influenza A(H3N2)v viruses, United States, 2011. . Emerg Infect Dis 18:, 834–837. [CrossRef][PubMed]
    [Google Scholar]
  21. Liu Y., Ji J., Xie Q., Wang J., Shang H., Chen C., Chen F., Xue C., Cao Y.. & other authors ( 2011;). Isolation and complete genomic characterization of H1N1 subtype swine influenza viruses in southern China through the 2009 pandemic. . Virol J 8:, 129. [CrossRef][PubMed]
    [Google Scholar]
  22. Lu G., Moriyama E. N.. ( 2004;). Vector NTI, a balanced all-in-one sequence analysis suite. . Brief Bioinform 5:, 378–388. [CrossRef][PubMed]
    [Google Scholar]
  23. Marozin S., Gregory V., Cameron K., Bennett M., Valette M., Aymard M., Foni E., Barigazzi G., Lin Y., Hay A.. ( 2002;). Antigenic and genetic diversity among swine influenza A H1N1 and H1N2 viruses in Europe. . J Gen Virol 83:, 735–745.[PubMed]
    [Google Scholar]
  24. Matrosovich M., Zhou N., Kawaoka Y., Webster R.. ( 1999;). The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. . J Virol 73:, 1146–1155.[PubMed]
    [Google Scholar]
  25. Mohan R., Saif Y. M., Erickson G. A., Gustafson G. A., Easterday B. C.. ( 1981;). Serologic and epidemiologic evidence of infection in turkeys with an agent related to the swine influenza virus. . Avian Dis 25:, 11–16. [CrossRef][PubMed]
    [Google Scholar]
  26. OIE (2009). Chapter 2.3.4. In Avian Influenza. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Office International des Epizoties;. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.03.04_AI.pdf.
    [Google Scholar]
  27. Olsen B., Munster V. J., Wallensten A., Waldenström J., Osterhaus A. D., Fouchier R. A.. ( 2006;). Global patterns of influenza a virus in wild birds. . Science 312:, 384–388. [CrossRef][PubMed]
    [Google Scholar]
  28. Pomeroy B. S.. ( 1982;). Avian influenza in the United States (1964–1980). . In: Proceedings of the 1st International Symposium on Avian Influenza, 1981, pp. 13–17. Richmond, VA:: Carter Company Corporation;.
    [Google Scholar]
  29. Reed L. J., Muench H. A.. ( 1938;). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  30. Schultz U., Fitch W. M., Ludwig S., Mandler J., Scholtissek C.. ( 1991;). Evolution of pig influenza viruses. . Virology 183:, 61–73. [CrossRef][PubMed]
    [Google Scholar]
  31. Shinya K., Hamm S., Hatta M., Ito H., Ito T., Kawaoka Y.. ( 2004;). PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. . Virology 320:, 258–266. [CrossRef][PubMed]
    [Google Scholar]
  32. Smith G. J., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J.. & other authors ( 2009;). Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. . Nature 459:, 1122–1125. [CrossRef][PubMed]
    [Google Scholar]
  33. Srinivasan A., Viswanathan K., Raman R., Chandrasekaran A., Raguram S., Tumpey T. M., Sasisekharan V., Sasisekharan R.. ( 2008;). Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. . Proc Natl Acad Sci USA 105:, 2800–2805. [CrossRef][PubMed]
    [Google Scholar]
  34. Tumpey T. M., Maines T. R., Van Hoeven N., Glaser L., Solórzano A., Pappas C., Cox N. J., Swayne D. E., Palese P.. & other authors ( 2007;). A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. . Science 315:, 655–659. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065524-0
Loading
/content/journal/jgv/10.1099/vir.0.065524-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error