1887

Abstract

The molecular basis for the increased resistance of astrocytes to a non-neuropathogenic strain of West Nile virus (WNV), WNV-MAD78, compared with the neuropathogenic strain WNV-NY remains unclear. Here, we demonstrated that the reduced susceptibility of astrocytes to WNV-MAD78 is due to a combination of both cellular activities as well as viral determinants. Analyses of the viral particle indicated that astrocyte-derived WNV-MAD78 particles were less infectious than those of WNV-NY. Additionally, inhibition of cellular furin-like proteases increased WNV-MAD78 infectious particle production in astrocytes, suggesting that high levels of furin-like protease activity within these cells acted in a cell- and strain-specific manner to inhibit WNV-MAD78 replication. Moreover, analysis of recombinant viruses indicated that the structural proteins of WNV-MAD78 were responsible for decreased particle infectivity and the corresponding reduction in infectious particle production compared with WNV-NY. Thus, the composition of the WNV virion was also a major determinant for viral fitness within astrocytes and may contribute to WNV propagation within the central nervous system. Whether the WNV-MAD78 structural genes reduce virus replication and particle infectivity through the same mechanism as the cellular furin-like protease activity or whether these two determinants function through distinct pathways remains to be determined.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065474-0
2014-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1991.html?itemId=/content/journal/jgv/10.1099/vir.0.065474-0&mimeType=html&fmt=ahah

References

  1. Abbott N. J. 2002; Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638 [View Article][PubMed]
    [Google Scholar]
  2. Beasley D. W., Davis C. T., Whiteman M., Granwehr B., Kinney R. M., Barrett A. D. 2004; Molecular determinants of virulence of West Nile virus in North America. Arch Virol Suppl1835–41[PubMed]
    [Google Scholar]
  3. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. 2005; Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. J Virol 79:8339–8347 [View Article][PubMed]
    [Google Scholar]
  4. Becker G. L., Lu Y., Hardes K., Strehlow B., Levesque C., Lindberg I., Sandvig K., Bakowsky U., Day R.other authors 2012; Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 287:21992–22003 [View Article][PubMed]
    [Google Scholar]
  5. Botha E. M., Markotter W., Wolfaardt M., Paweska J. T., Swanepoel R., Palacios G., Nel L. H., Venter M. 2008; Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. Emerg Infect Dis 14:222–230 [View Article][PubMed]
    [Google Scholar]
  6. Brinton M. A. 2002; The molecular biology of West Nile Virus: a new invader of the western hemisphere. Annu Rev Microbiol 56:371–402 [View Article][PubMed]
    [Google Scholar]
  7. Cho H., Diamond M. S. 2012; Immune responses to West Nile virus infection in the central nervous system. Viruses 4:3812–3830 [View Article][PubMed]
    [Google Scholar]
  8. Colpitts T. M., Rodenhuis-Zybert I., Moesker B., Wang P., Fikrig E., Smit J. M. 2011; prM-antibody renders immature West Nile virus infectious in vivo. J Gen Virol 92:2281–2285 [View Article][PubMed]
    [Google Scholar]
  9. Davis C. W., Mattei L. M., Nguyen H. Y., Ansarah-Sobrinho C., Doms R. W., Pierson T. C. 2006a; The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem 281:37183–37194 [View Article][PubMed]
    [Google Scholar]
  10. Davis C. W., Nguyen H. Y., Hanna S. L., Sánchez M. D., Doms R. W., Pierson T. C. 2006b; West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301 [View Article][PubMed]
    [Google Scholar]
  11. Deiva K., Khiati A., Hery C., Salim H., Leclerc P., Horellou P., Tardieu M. 2006; CCR5-, DC-SIGN-dependent endocytosis and delayed reverse transcription after human immunodeficiency virus type 1 infection in human astrocytes. AIDS Res Hum Retroviruses 22:1152–1161 [View Article][PubMed]
    [Google Scholar]
  12. Diamond M. S., Pierson T. C., Fremont D. H. 2008; The structural immunology of antibody protection against West Nile virus. Immunol Rev 225:212–225 [View Article][PubMed]
    [Google Scholar]
  13. Gómez R. M., Yep A., Schattner M., Berría M. I. 2003; Junin virus-induced astrocytosis is impaired by iNOS inhibition. J Med Virol 69:145–149 [View Article][PubMed]
    [Google Scholar]
  14. Hanna S. L., Pierson T. C., Sanchez M. D., Ahmed A. A., Murtadha M. M., Doms R. W. 2005; N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274 [View Article][PubMed]
    [Google Scholar]
  15. Hobson-Peters J., Toye P., Sánchez M. D., Bossart K. N., Wang L. F., Clark D. C., Cheah W. Y., Hall R. A. 2008; A glycosylated peptide in the West Nile virus envelope protein is immunogenic during equine infection. J Gen Virol 89:3063–3072 [View Article][PubMed]
    [Google Scholar]
  16. Hu G., Yao H., Chaudhuri A. D., Duan M., Yelamanchili S. V., Wen H., Cheney P. D., Fox H. S., Buch S. 2012; Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis 3:e381 [View Article][PubMed]
    [Google Scholar]
  17. Hussmann K. L., Fredericksen B. L. 2014; Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes. J Gen Virol 95:862–867 [View Article][PubMed]
    [Google Scholar]
  18. Hussmann K. L., Samuel M. A., Kim K. S., Diamond M. S., Fredericksen B. L. 2013; Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. J Virol 87:2814–2822 [View Article][PubMed]
    [Google Scholar]
  19. Kumar M., Verma S., Nerurkar V. R. 2010; Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation 7:73 [View Article][PubMed]
    [Google Scholar]
  20. Li J., Hu S., Zhou L., Ye L., Wang X., Ho J., Ho W. 2011; Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia 59:58–67 [View Article][PubMed]
    [Google Scholar]
  21. Martina B. E., Koraka P., van den Doel P., Rimmelzwaan G. F., Haagmans B. L., Osterhaus A. D. 2008; DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-alpha and TNF-alpha. Virus Res 135:64–71 [View Article][PubMed]
    [Google Scholar]
  22. Mukherjee S., Lin T. Y., Dowd K. A., Manhart C. J., Pierson T. C. 2011; The infectivity of prM-containing partially mature West Nile virus does not require the activity of cellular furin-like proteases. J Virol 85:12067–12072 [View Article][PubMed]
    [Google Scholar]
  23. Nelson S., Jost C. A., Xu Q., Ess J., Martin J. E., Oliphant T., Whitehead S. S., Durbin A. P., Graham B. S.other authors 2008; Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. PLoS Pathog 4:e1000060 [View Article][PubMed]
    [Google Scholar]
  24. Pierson T. C., Diamond M. S. 2012; Degrees of maturity: the complex structure and biology of flaviviruses. Curr Opin Virol 2:168–175 [View Article][PubMed]
    [Google Scholar]
  25. Roe K., Kumar M., Lum S., Orillo B., Nerurkar V. R., Verma S. 2012; West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol 93:1193–1203 [View Article][PubMed]
    [Google Scholar]
  26. Scherret J. H., Mackenzie J. S., Khromykh A. A., Hall R. A. 2001; Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951:361–363 [View Article][PubMed]
    [Google Scholar]
  27. Shi P. Y., Tilgner M., Lo M. K., Kent K. A., Bernard K. A. 2002; Infectious cDNA clone of the epidemic West Nile virus from New York City. J Virol 76:5847–5856 [View Article][PubMed]
    [Google Scholar]
  28. Stadler K., Allison S. L., Schalich J., Heinz F. X. 1997; Proteolytic activation of tick-borne encephalitis virus by furin. J Virol 71:8475–8481[PubMed]
    [Google Scholar]
  29. Stins M. F., Shen Y., Huang S. H., Gilles F., Kalra V. K., Kim K. S. 2001; Gp120 activates children’s brain endothelial cells via CD4. J Neurovirol 7:125–134 [View Article][PubMed]
    [Google Scholar]
  30. Suthar M. S., Brassil M. M., Blahnik G., Gale M. Jr 2012; Infectious clones of novel lineage 1 and lineage 2 West Nile virus strains WNV-TX02 and WNV-Madagascar. J Virol 86:7704–7709 [View Article][PubMed]
    [Google Scholar]
  31. van Marle G., Antony J., Ostermann H., Dunham C., Hunt T., Halliday W., Maingat F., Urbanowski M. D., Hobman T.other authors 2007; West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. J Virol 81:10933–10949 [View Article][PubMed]
    [Google Scholar]
  32. Vandergaast R., Hoover L. I., Zheng K., Fredericksen B. L. 2014; Generation of West Nile virus infectious clones containing amino acid insertions between capsid and capsid anchor. Viruses 6:1637–1653 [View Article][PubMed]
    [Google Scholar]
  33. Verma S., Lo Y., Chapagain M., Lum S., Kumar M., Gurjav U., Luo H., Nakatsuka A., Nerurkar V. R. 2009; West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier. Virology 385:425–433 [View Article][PubMed]
    [Google Scholar]
  34. Verma S., Kumar M., Gurjav U., Lum S., Nerurkar V. R. 2010; Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. Virology 397:130–138 [View Article][PubMed]
    [Google Scholar]
  35. Wang Z., Trillo-Pazos G., Kim S. Y., Canki M., Morgello S., Sharer L. R., Gelbard H. A., Su Z. Z., Kang D. C.other authors 2004; Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. J Neurovirol 10:Suppl 125–32 [View Article][PubMed]
    [Google Scholar]
  36. Zybert I. A., van der Ende-Metselaar H., Wilschut J., Smit J. M. 2008; Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol 89:3047–3051 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065474-0
Loading
/content/journal/jgv/10.1099/vir.0.065474-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error