1887

Abstract

The molecular basis for the increased resistance of astrocytes to a non-neuropathogenic strain of West Nile virus (WNV), WNV-MAD78, compared with the neuropathogenic strain WNV-NY remains unclear. Here, we demonstrated that the reduced susceptibility of astrocytes to WNV-MAD78 is due to a combination of both cellular activities as well as viral determinants. Analyses of the viral particle indicated that astrocyte-derived WNV-MAD78 particles were less infectious than those of WNV-NY. Additionally, inhibition of cellular furin-like proteases increased WNV-MAD78 infectious particle production in astrocytes, suggesting that high levels of furin-like protease activity within these cells acted in a cell- and strain-specific manner to inhibit WNV-MAD78 replication. Moreover, analysis of recombinant viruses indicated that the structural proteins of WNV-MAD78 were responsible for decreased particle infectivity and the corresponding reduction in infectious particle production compared with WNV-NY. Thus, the composition of the WNV virion was also a major determinant for viral fitness within astrocytes and may contribute to WNV propagation within the central nervous system. Whether the WNV-MAD78 structural genes reduce virus replication and particle infectivity through the same mechanism as the cellular furin-like protease activity or whether these two determinants function through distinct pathways remains to be determined.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065474-0
2014-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1991.html?itemId=/content/journal/jgv/10.1099/vir.0.065474-0&mimeType=html&fmt=ahah

References

  1. Abbott N. J.. ( 2002;). Astrocyte–endothelial interactions and blood–brain barrier permeability. . J Anat 200:, 629–638. [CrossRef][PubMed]
    [Google Scholar]
  2. Beasley D. W., Davis C. T., Whiteman M., Granwehr B., Kinney R. M., Barrett A. D.. ( 2004;). Molecular determinants of virulence of West Nile virus in North America. . Arch Virol Suppl (18), 35–41.[PubMed]
    [Google Scholar]
  3. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D.. ( 2005;). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. . J Virol 79:, 8339–8347. [CrossRef][PubMed]
    [Google Scholar]
  4. Becker G. L., Lu Y., Hardes K., Strehlow B., Levesque C., Lindberg I., Sandvig K., Bakowsky U., Day R.. & other authors ( 2012;). Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. . J Biol Chem 287:, 21992–22003. [CrossRef][PubMed]
    [Google Scholar]
  5. Botha E. M., Markotter W., Wolfaardt M., Paweska J. T., Swanepoel R., Palacios G., Nel L. H., Venter M.. ( 2008;). Genetic determinants of virulence in pathogenic lineage 2 West Nile virus strains. . Emerg Infect Dis 14:, 222–230. [CrossRef][PubMed]
    [Google Scholar]
  6. Brinton M. A.. ( 2002;). The molecular biology of West Nile Virus: a new invader of the western hemisphere. . Annu Rev Microbiol 56:, 371–402. [CrossRef][PubMed]
    [Google Scholar]
  7. Cho H., Diamond M. S.. ( 2012;). Immune responses to West Nile virus infection in the central nervous system. . Viruses 4:, 3812–3830. [CrossRef][PubMed]
    [Google Scholar]
  8. Colpitts T. M., Rodenhuis-Zybert I., Moesker B., Wang P., Fikrig E., Smit J. M.. ( 2011;). prM-antibody renders immature West Nile virus infectious in vivo. . J Gen Virol 92:, 2281–2285. [CrossRef][PubMed]
    [Google Scholar]
  9. Davis C. W., Mattei L. M., Nguyen H. Y., Ansarah-Sobrinho C., Doms R. W., Pierson T. C.. ( 2006a;). The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). . J Biol Chem 281:, 37183–37194. [CrossRef][PubMed]
    [Google Scholar]
  10. Davis C. W., Nguyen H. Y., Hanna S. L., Sánchez M. D., Doms R. W., Pierson T. C.. ( 2006b;). West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. . J Virol 80:, 1290–1301. [CrossRef][PubMed]
    [Google Scholar]
  11. Deiva K., Khiati A., Hery C., Salim H., Leclerc P., Horellou P., Tardieu M.. ( 2006;). CCR5-, DC-SIGN-dependent endocytosis and delayed reverse transcription after human immunodeficiency virus type 1 infection in human astrocytes. . AIDS Res Hum Retroviruses 22:, 1152–1161. [CrossRef][PubMed]
    [Google Scholar]
  12. Diamond M. S., Pierson T. C., Fremont D. H.. ( 2008;). The structural immunology of antibody protection against West Nile virus. . Immunol Rev 225:, 212–225. [CrossRef][PubMed]
    [Google Scholar]
  13. Gómez R. M., Yep A., Schattner M., Berría M. I.. ( 2003;). Junin virus-induced astrocytosis is impaired by iNOS inhibition. . J Med Virol 69:, 145–149. [CrossRef][PubMed]
    [Google Scholar]
  14. Hanna S. L., Pierson T. C., Sanchez M. D., Ahmed A. A., Murtadha M. M., Doms R. W.. ( 2005;). N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. . J Virol 79:, 13262–13274. [CrossRef][PubMed]
    [Google Scholar]
  15. Hobson-Peters J., Toye P., Sánchez M. D., Bossart K. N., Wang L. F., Clark D. C., Cheah W. Y., Hall R. A.. ( 2008;). A glycosylated peptide in the West Nile virus envelope protein is immunogenic during equine infection. . J Gen Virol 89:, 3063–3072. [CrossRef][PubMed]
    [Google Scholar]
  16. Hu G., Yao H., Chaudhuri A. D., Duan M., Yelamanchili S. V., Wen H., Cheney P. D., Fox H. S., Buch S.. ( 2012;). Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. . Cell Death Dis 3:, e381. [CrossRef][PubMed]
    [Google Scholar]
  17. Hussmann K. L., Fredericksen B. L.. ( 2014;). Differential induction of CCL5 by pathogenic and non-pathogenic strains of West Nile virus in brain endothelial cells and astrocytes. . J Gen Virol 95:, 862–867. [CrossRef][PubMed]
    [Google Scholar]
  18. Hussmann K. L., Samuel M. A., Kim K. S., Diamond M. S., Fredericksen B. L.. ( 2013;). Differential replication of pathogenic and nonpathogenic strains of West Nile virus within astrocytes. . J Virol 87:, 2814–2822. [CrossRef][PubMed]
    [Google Scholar]
  19. Kumar M., Verma S., Nerurkar V. R.. ( 2010;). Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. . J Neuroinflammation 7:, 73. [CrossRef][PubMed]
    [Google Scholar]
  20. Li J., Hu S., Zhou L., Ye L., Wang X., Ho J., Ho W.. ( 2011;). Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. . Glia 59:, 58–67. [CrossRef][PubMed]
    [Google Scholar]
  21. Martina B. E., Koraka P., van den Doel P., Rimmelzwaan G. F., Haagmans B. L., Osterhaus A. D.. ( 2008;). DC-SIGN enhances infection of cells with glycosylated West Nile virus in vitro and virus replication in human dendritic cells induces production of IFN-alpha and TNF-alpha. . Virus Res 135:, 64–71. [CrossRef][PubMed]
    [Google Scholar]
  22. Mukherjee S., Lin T. Y., Dowd K. A., Manhart C. J., Pierson T. C.. ( 2011;). The infectivity of prM-containing partially mature West Nile virus does not require the activity of cellular furin-like proteases. . J Virol 85:, 12067–12072. [CrossRef][PubMed]
    [Google Scholar]
  23. Nelson S., Jost C. A., Xu Q., Ess J., Martin J. E., Oliphant T., Whitehead S. S., Durbin A. P., Graham B. S.. & other authors ( 2008;). Maturation of West Nile virus modulates sensitivity to antibody-mediated neutralization. . PLoS Pathog 4:, e1000060. [CrossRef][PubMed]
    [Google Scholar]
  24. Pierson T. C., Diamond M. S.. ( 2012;). Degrees of maturity: the complex structure and biology of flaviviruses. . Curr Opin Virol 2:, 168–175. [CrossRef][PubMed]
    [Google Scholar]
  25. Roe K., Kumar M., Lum S., Orillo B., Nerurkar V. R., Verma S.. ( 2012;). West Nile virus-induced disruption of the blood–brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. . J Gen Virol 93:, 1193–1203. [CrossRef][PubMed]
    [Google Scholar]
  26. Scherret J. H., Mackenzie J. S., Khromykh A. A., Hall R. A.. ( 2001;). Biological significance of glycosylation of the envelope protein of Kunjin virus. . Ann N Y Acad Sci 951:, 361–363. [CrossRef][PubMed]
    [Google Scholar]
  27. Shi P. Y., Tilgner M., Lo M. K., Kent K. A., Bernard K. A.. ( 2002;). Infectious cDNA clone of the epidemic West Nile virus from New York City. . J Virol 76:, 5847–5856. [CrossRef][PubMed]
    [Google Scholar]
  28. Stadler K., Allison S. L., Schalich J., Heinz F. X.. ( 1997;). Proteolytic activation of tick-borne encephalitis virus by furin. . J Virol 71:, 8475–8481.[PubMed]
    [Google Scholar]
  29. Stins M. F., Shen Y., Huang S. H., Gilles F., Kalra V. K., Kim K. S.. ( 2001;). Gp120 activates children’s brain endothelial cells via CD4. . J Neurovirol 7:, 125–134. [CrossRef][PubMed]
    [Google Scholar]
  30. Suthar M. S., Brassil M. M., Blahnik G., Gale M. Jr. ( 2012;). Infectious clones of novel lineage 1 and lineage 2 West Nile virus strains WNV-TX02 and WNV-Madagascar. . J Virol 86:, 7704–7709. [CrossRef][PubMed]
    [Google Scholar]
  31. van Marle G., Antony J., Ostermann H., Dunham C., Hunt T., Halliday W., Maingat F., Urbanowski M. D., Hobman T.. & other authors ( 2007;). West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. . J Virol 81:, 10933–10949. [CrossRef][PubMed]
    [Google Scholar]
  32. Vandergaast R., Hoover L. I., Zheng K., Fredericksen B. L.. ( 2014;). Generation of West Nile virus infectious clones containing amino acid insertions between capsid and capsid anchor. . Viruses 6:, 1637–1653. [CrossRef][PubMed]
    [Google Scholar]
  33. Verma S., Lo Y., Chapagain M., Lum S., Kumar M., Gurjav U., Luo H., Nakatsuka A., Nerurkar V. R.. ( 2009;). West Nile virus infection modulates human brain microvascular endothelial cells tight junction proteins and cell adhesion molecules: transmigration across the in vitro blood–brain barrier. . Virology 385:, 425–433. [CrossRef][PubMed]
    [Google Scholar]
  34. Verma S., Kumar M., Gurjav U., Lum S., Nerurkar V. R.. ( 2010;). Reversal of West Nile virus-induced blood–brain barrier disruption and tight junction proteins degradation by matrix metalloproteinases inhibitor. . Virology 397:, 130–138. [CrossRef][PubMed]
    [Google Scholar]
  35. Wang Z., Trillo-Pazos G., Kim S. Y., Canki M., Morgello S., Sharer L. R., Gelbard H. A., Su Z. Z., Kang D. C.. & other authors ( 2004;). Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: potential role in neuropathogenesis. . J Neurovirol 10: (Suppl 1), 25–32. [CrossRef][PubMed]
    [Google Scholar]
  36. Zybert I. A., van der Ende-Metselaar H., Wilschut J., Smit J. M.. ( 2008;). Functional importance of dengue virus maturation: infectious properties of immature virions. . J Gen Virol 89:, 3047–3051. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065474-0
Loading
/content/journal/jgv/10.1099/vir.0.065474-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error