1887

Abstract

The Gag polyprotein of feline immunodeficiency virus (FIV) assembles at the plasma membrane of the infected cells. We aimed to identify the FIV Gag domains that interact and promote Gag multimerization. To do this we generated a series of Gag subdomains and tested their ability to associate with full-length Gag and be recruited into extracellular virus-like particles (VLPs). Removal of 37 residues from the C-terminus of FIV Gag and deletion of the N-terminal and central regions of the nucleocapsid (NC) domain attenuated but did not abrogate association with wild-type Gag, whereas a Gag mutant protein encompassing the matrix (MA) and capsid (CA) domains interacted poorly with full-length Gag. Association with wild-type Gag was abolished by deleting most of the NC together with the N-terminal 40 residues of the MA, which most likely reflects the inability of this Gag mutant to bind RNA. Notably, the CA–NC Gag subdomain both associated with wild-type Gag and was recruited into particles in a proportion close to 50 % of the total Gag-related protein mass of VLPs. Moreover, both a Gag protein lacking the C-terminal p2 peptide and a nonmyristoylated version of the polyprotein exhibited a transdominant-negative effect on the assembly of wild-type Gag. Analysis of Gag mutants carrying internal deletions within the CA revealed that the N-terminal and the C-terminal domains of the CA are necessary for Gag assembly. Our results demonstrate that the FIV CA–NC region constitutes the principal self-interaction domain of Gag and that the RNA-binding capacity of Gag is necessary for its multimerization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065151-0
2014-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/2050.html?itemId=/content/journal/jgv/10.1099/vir.0.065151-0&mimeType=html&fmt=ahah

References

  1. Accola M. A., Strack B., Göttlinger H. G. 2000; Efficient particle production by minimal Gag constructs which retain the carboxy-terminal domain of human immunodeficiency virus type 1 capsid-p2 and a late assembly domain. J Virol 74:5395–5402 [View Article][PubMed]
    [Google Scholar]
  2. Affranchino J. L., González S. A. 2010; In vitro assembly of the feline immunodeficiency virus Gag polyprotein. Virus Res 150:153–157 [View Article][PubMed]
    [Google Scholar]
  3. Affranchino J. L., González S. A. 2014; Understanding the process of envelope glycoprotein incorporation into virions in simian and feline immunodeficiency viruses. Viruses 6:264–283 [View Article][PubMed]
    [Google Scholar]
  4. Alfadhli A., Dhenub T. C., Still A., Barklis E. 2005; Analysis of human immunodeficiency virus type 1 Gag dimerization-induced assembly. J Virol 79:14498–14506 [View Article][PubMed]
    [Google Scholar]
  5. Alfadhli A., Still A., Barklis E. 2009; Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 83:12196–12203 [View Article][PubMed]
    [Google Scholar]
  6. Bieniasz P. D. 2006; Late budding domains and host proteins in enveloped virus release. Virology 344:55–63 [View Article][PubMed]
    [Google Scholar]
  7. Briggs J. A., Wilk T., Welker R., Kräusslich H.-G., Fuller S. D. 2003; Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22:1707–1715 [View Article][PubMed]
    [Google Scholar]
  8. Briggs J. A., Riches J. D., Glass B., Bartonova V., Zanetti G., Kräusslich H.-G. 2009; Structure and assembly of immature HIV. Proc Natl Acad Sci U S A 106:11090–11095 [View Article][PubMed]
    [Google Scholar]
  9. Burkhard M. J., Dean G. A. 2003; Transmission and immunopathogenesis of FIV in cats as a model for HIV. Curr HIV Res 1:15–29 [View Article][PubMed]
    [Google Scholar]
  10. Burniston M. T., Cimarelli A., Colgan J., Curtis S. P., Luban J. 1999; Human immunodeficiency virus type 1 Gag polyprotein multimerization requires the nucleocapsid domain and RNA and is promoted by the capsid-dimer interface and the basic region of matrix protein. J Virol 73:8527–8540[PubMed]
    [Google Scholar]
  11. Calistri A., Del Vecchio C., Salata C., Celestino M., Celegato M., Göttlinger H., Palù G., Parolin C. 2009; Role of the feline immunodeficiency virus L-domain in the presence or absence of Gag processing: involvement of ubiquitin and Nedd4-2s ligase in viral egress. J Cell Physiol 218:175–182 [View Article][PubMed]
    [Google Scholar]
  12. Campbell S., Rein A. 1999; In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J Virol 73:2270–2279[PubMed]
    [Google Scholar]
  13. Chukkapalli V., Oh S. J., Ono A. 2010; Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc Natl Acad Sci U S A 107:1600–1605 [View Article][PubMed]
    [Google Scholar]
  14. Cimarelli A., Sandin S., Höglund S., Luban J. 2000; Basic residues in human immunodeficiency virus type 1 nucleocapsid promote virion assembly via interaction with RNA. J Virol 74:3046–3057 [View Article][PubMed]
    [Google Scholar]
  15. Clements J. E., Wong-Staal F. 1992; Molecular biology of lentiviruses. Semin Virol 3:137–146
    [Google Scholar]
  16. Dorfman T., Mammano F., Haseltine W. A., Göttlinger H. G. 1994; Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68:1689–1696[PubMed]
    [Google Scholar]
  17. Elder J. H., Schnölzer M., Hasselkus-Light C. S., Henson M., Lerner D. A., Phillips T. R., Wagaman P. C., Kent S. B. 1993; Identification of proteolytic processing sites within the Gag and Pol polyproteins of feline immunodeficiency virus. J Virol 67:1869–1876[PubMed]
    [Google Scholar]
  18. Elder J. H., Lin Y. C., Fink E., Grant C. K. 2010; Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 8:73–80 [View Article][PubMed]
    [Google Scholar]
  19. Freed E. O., Martin M. A. 1996; Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70:341–351[PubMed]
    [Google Scholar]
  20. Fuerst T. R., Earl P. L., Moss B. 1987; Use of a hybrid vaccinia virus-T7 RNA polymerase system for expression of target genes. Mol Cell Biol 7:2538–2544[PubMed]
    [Google Scholar]
  21. Gamble T. R., Yoo S., Vajdos F. F., von Schwedler U. K., Worthylake D. K., Wang H., McCutcheon J. P., Sundquist W. I., Hill C. P. 1997; Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278:849–853 [View Article][PubMed]
    [Google Scholar]
  22. González S. A., Affranchino J. L. 1998; Substitution of leucine 8 in the simian immunodeficiency virus matrix protein impairs particle formation without affecting N-myristylation of the Gag precursor. Virology 240:27–35 [View Article][PubMed]
    [Google Scholar]
  23. González S. A., Affranchino J. L., Gelderblom H. R., Burny A. 1993; Assembly of the matrix protein of simian immunodeficiency virus into virus-like particles. Virology 194:548–556 [View Article][PubMed]
    [Google Scholar]
  24. González S. A., Burny A., Affranchino J. L. 1996; Identification of domains in the simian immunodeficiency virus matrix protein essential for assembly and envelope glycoprotein incorporation. J Virol 70:6384–6389[PubMed]
    [Google Scholar]
  25. Huseby D., Barklis R. L., Alfadhli A., Barklis E. 2005; Assembly of human immunodeficiency virus precursor gag proteins. J Biol Chem 280:17664–17670 [View Article][PubMed]
    [Google Scholar]
  26. Jewell N. A., Mansky L. M. 2000; In the beginning: genome recognition, RNA encapsidation and the initiation of complex retrovirus assembly. J Gen Virol 81:1889–1899[PubMed]
    [Google Scholar]
  27. Johnson M. C., Scobie H. M., Ma Y. M., Vogt V. M. 2002; Nucleic acid-independent retrovirus assembly can be driven by dimerization. J Virol 76:11177–11185 [View Article][PubMed]
    [Google Scholar]
  28. Lee Y. M., Yu X. F. 1998; Identification and characterization of virus assembly intermediate complexes in HIV-1-infected CD4+T cells. Virology 243:78–93 [View Article][PubMed]
    [Google Scholar]
  29. Luttge B. G., Shehu-Xhilaga M., Demirov D. G., Adamson C. S., Soheilian F., Nagashima K., Stephen A. G., Fisher R. J., Freed E. O. 2008; Molecular characterization of feline immunodeficiency virus budding. J Virol 82:2106–2119 [View Article][PubMed]
    [Google Scholar]
  30. Mammano F., Ohagen A., Höglund S., Göttlinger H. G. 1994; Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J Virol 68:4927–4936[PubMed]
    [Google Scholar]
  31. Manrique M. L., Celma C. C. P., González S. A., Affranchino J. L. 2001; Mutational analysis of the feline immunodeficiency virus matrix protein. Virus Res 76:103–113 [View Article][PubMed]
    [Google Scholar]
  32. Manrique J. M., Celma C. C. P., Hunter E., Affranchino J. L., González S. A. 2003; Positive and negative modulation of virus infectivity and envelope glycoprotein incorporation into virions by amino acid substitutions at the N terminus of the simian immunodeficiency virus matrix protein. J Virol 77:10881–10888 [View Article][PubMed]
    [Google Scholar]
  33. Manrique M. L., González S. A., Affranchino J. L. 2004a; Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses. Virology 329:157–167 [View Article][PubMed]
    [Google Scholar]
  34. Manrique M. L., Rauddi M. L., González S. A., Affranchino J. L. 2004b; Functional domains in the feline immunodeficiency virus nucleocapsid protein. Virology 327:83–92 [View Article][PubMed]
    [Google Scholar]
  35. Manrique J. M., Affranchino J. L., González S. A. 2008; In vitro binding of simian immunodeficiency virus matrix protein to the cytoplasmic domain of the envelope glycoprotein. Virology 374:273–279 [View Article][PubMed]
    [Google Scholar]
  36. Momany C., Kovari L. C., Prongay A. J., Keller W., Gitti R. K., Lee B. M., Gorbalenya A. E., Tong L., McClure J.other authors 1996; Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Biol 3:763–770 [View Article][PubMed]
    [Google Scholar]
  37. Morikawa Y., Goto T., Sano K. 1999; In vitro assembly of human immunodeficiency virus type 1 Gag protein. J Biol Chem 274:27997–28002 [View Article][PubMed]
    [Google Scholar]
  38. Murakami T., Freed E. O. 2000; Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail. J Virol 74:3548–3554 [View Article][PubMed]
    [Google Scholar]
  39. Muriaux D., Mirro J., Harvin D., Rein A. 2001; RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 98:5246–5251 [View Article][PubMed]
    [Google Scholar]
  40. Olmsted R. A., Barnes A. K., Yamamoto J. K., Hirsch V. M., Purcell R. H., Johnson P. R. 1989; Molecular cloning of feline immunodeficiency virus. Proc Natl Acad Sci U S A 86:2448–2452 [View Article][PubMed]
    [Google Scholar]
  41. Ono A., Freed E. O. 1999; Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol 73:4136–4144[PubMed]
    [Google Scholar]
  42. Ono A., Orenstein J. M., Freed E. O. 2000; Role of the Gag matrix domain in targeting human immunodeficiency virus type 1 assembly. J Virol 74:2855–2866 [View Article][PubMed]
    [Google Scholar]
  43. Paillart J. C., Göttlinger H. G. 1999; Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of gag membrane targeting. J Virol 73:2604–2612[PubMed]
    [Google Scholar]
  44. Pedersen N. C., Ho E. W., Brown M. L., Yamamoto J. K. 1987; Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235:790–793 [View Article][PubMed]
    [Google Scholar]
  45. Rauddi M. L., Mac Donald C. L., Affranchino J. L., González S. A. 2011; Mapping of the self-interaction domains in the simian immunodeficiency virus Gag polyprotein. AIDS Res Hum Retroviruses 27:303–316 [View Article][PubMed]
    [Google Scholar]
  46. Saad J. S., Miller J., Tai J., Kim A., Ghanam R. H., Summers M. F. 2006; Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 103:11364–11369 [View Article][PubMed]
    [Google Scholar]
  47. von Schwedler U. K., Stray K. M., Garrus J. E., Sundquist W. I. 2003; Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77:5439–5450 [View Article][PubMed]
    [Google Scholar]
  48. Yamamoto J. K., Sanou M. P., Abbott J. R., Coleman J. K. 2010; Feline immunodeficiency virus model for designing HIV/AIDS vaccines. Curr HIV Res 8:14–25 [View Article][PubMed]
    [Google Scholar]
  49. Zhang Y., Barklis E. 1997; Effects of nucleocapsid mutations on human immunodeficiency virus assembly and RNA encapsidation. J Virol 71:6765–6776[PubMed]
    [Google Scholar]
  50. Zhang Y., Qian H., Love Z., Barklis E. 1998; Analysis of the assembly function of the human immunodeficiency virus type 1 gag protein nucleocapsid domain. J Virol 72:1782–1789[PubMed]
    [Google Scholar]
  51. Zhou W., Parent L. J., Wills J. W., Resh M. D. 1994; Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 68:2556–2569[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065151-0
Loading
/content/journal/jgv/10.1099/vir.0.065151-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error