1887

Abstract

Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins , but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgM B-cells were increased in blood lymphocytes from BLV-infected cattle. IgM B-cells mainly expressed BLV antigens, whereas IgM B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. , and ) in IgM B-cells than those in IgM B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgM or IgM B-cells but no IgM B-cells. To our knowledge, this is the first study to demonstrate that IgM B-cells mainly comprise BLV-expressing cells, whereas IgM B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065011-0
2014-08-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/8/1832.html?itemId=/content/journal/jgv/10.1099/vir.0.065011-0&mimeType=html&fmt=ahah

References

  1. Akl H., Badran B., Dobirta G., Manfouo-Foutsop G., Moschitta M., Merimi M., Burny A., Martiat P., Willard-Gallo K. E.. ( 2007; ). Progressive loss of CD3 expression after HTLV-I infection results from chromatin remodeling affecting all the CD3 genes and persists despite early viral genes silencing. . Virol J 4:, 85. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anastas J. N., Moon R. T.. ( 2013; ). WNT signalling pathways as therapeutic targets in cancer. . Nat Rev Cancer 13:, 11–26. [CrossRef] [PubMed]
    [Google Scholar]
  3. Arase H., Mocarski E. S., Campbell A. E., Hill A. B., Lanier L. L.. ( 2002; ). Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. . Science 296:, 1323–1326. [CrossRef] [PubMed]
    [Google Scholar]
  4. Asquith B., Mosley A. J., Heaps A., Tanaka Y., Taylor G. P., McLean A. R., Bangham C. R.. ( 2005; ). Quantification of the virus–host interaction in human T lymphotropic virus I infection. . Retrovirology 2:, 75. [CrossRef] [PubMed]
    [Google Scholar]
  5. Burger J. A.. ( 2010; ). Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. . Semin Cancer Biol 20:, 424–430. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cambier J. C., Gauld S. B., Merrell K. T., Vilen B. J.. ( 2007; ). B-cell anergy: from transgenic models to naturally occurring anergic B cells?. Nat Rev Immunol 7:, 633–643. [CrossRef] [PubMed]
    [Google Scholar]
  7. Charles E. D., Brunetti C., Marukian S., Ritola K. D., Talal A. H., Marks K., Jacobson I. M., Rice C. M., Dustin L. B.. ( 2011; ). Clonal B cells in patients with hepatitis C virus-associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell subset. . Blood 117:, 5425–5437. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chung E. Y., Psathas J. N., Yu D., Li Y., Weiss M. J., Thomas-Tikhonenko A.. ( 2012; ). CD19 is a major B cell receptor-independent activator of MYC-driven B-lymphomagenesis. . J Clin Invest 122:, 2257–2266. [CrossRef] [PubMed]
    [Google Scholar]
  9. Copeland K. F., Haaksma A. G., Goudsmit J., Heeney J. L.. ( 1994; ). Calcium-mediated inhibition of phorbol ester and Tax trans-activation of the human T cell leukaemia virus type 1. . J Gen Virol 75:, 1623–1631. [CrossRef] [PubMed]
    [Google Scholar]
  10. Depoil D., Fleire S., Treanor B. L., Weber M., Harwood N. E., Marchbank K. L., Tybulewicz V. L., Batista F. D.. ( 2008; ). CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. . Nat Immunol 9:, 63–72. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dequiedt F., Hanon E., Kerkhofs P., Pastoret P. P., Portetelle D., Burny A., Kettmann R., Willems L.. ( 1997; ). Both wild-type and strongly attenuated bovine leukemia viruses protect peripheral blood mononuclear cells from apoptosis. . J Virol 71:, 630–639.[PubMed]
    [Google Scholar]
  12. Derse D., Hill S. A., Lloyd P. A., Chung H.-K., Morse B. A.. ( 2001; ). Examining human T-lymphotropic virus type 1 infection and replication by cell-free infection with recombinant virus vectors. . J Virol 75:, 8461–8468. [CrossRef] [PubMed]
    [Google Scholar]
  13. Eychène A., Rocques N., Pouponnot C.. ( 2008; ). A new MAFia in cancer. . Nat Rev Cancer 8:, 683–693. [CrossRef] [PubMed]
    [Google Scholar]
  14. Feuer G., Fraser J. K., Zack J. A., Lee F., Feuer R., Chen I. S.. ( 1996; ). Human T-cell leukemia virus infection of human hematopoietic progenitor cells: maintenance of virus infection during differentiation in vitro and in vivo. . J Virol 70:, 4038–4044.[PubMed]
    [Google Scholar]
  15. Florins A., de Brogniez A., Elemans M., Bouzar A.-B., François C., Reichert M., Asquith B., Willems L.. ( 2012; ). Viral expression directs the fate of B cells in bovine leukemia virus-infected sheep. . J Virol 86:, 621–624. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fulton B. E. Jr, Portella M., Radke K.. ( 2006; ). Dissemination of bovine leukemia virus-infected cells from a newly infected sheep lymph node. . J Virol 80:, 7873–7884. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gatot J.-S., Callebaut I., Mornon J. P., Portetelle D., Burny A., Kerkhofs P., Kettmann R., Willems L.. ( 1998; ). Conservative mutations in the immunosuppressive region of the bovine leukemia virus transmembrane protein affect fusion but not infectivity in vivo. . J Biol Chem 273:, 12870–12880. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ghez D., Lepelletier Y., Lambert S., Fourneau J.-M., Blot V., Janvier S., Arnulf B., van Endert P. M., Heveker N.. & other authors ( 2006; ). Neuropilin-1 is involved in human T-cell lymphotropic virus type 1 entry. . J Virol 80:, 6844–6854. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., Balon H., Bouzar A. B., Defoiche J.. & other authors ( 2007; ). Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. . Retrovirology 4:, 18. [CrossRef] [PubMed]
    [Google Scholar]
  20. Griebel P. J., Kennedy L., Graham T., Davis W. C., Reynolds J. D.. ( 1992; ). Characterization of B-cell phenotypic changes during ileal and jejunal Peyer’s patch development in sheep. . Immunology 77:, 564–570.[PubMed]
    [Google Scholar]
  21. Hanon E., Asquith R. E., Taylor G. P., Tanaka Y., Weber J. N., Bangham C. R.. ( 2000; ). High frequency of viral protein expression in human T cell lymphotropic virus type 1-infected peripheral blood mononuclear cells. . AIDS Res Hum Retroviruses 16:, 1711–1715. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hasegawa H., Sawa H., Lewis M. J., Orba Y., Sheehy N., Yamamoto Y., Ichinohe T., Tsunetsugu-Yokota Y., Katano H.. & other authors ( 2006; ). Thymus-derived leukemia-lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. . Nat Med 12:, 466–472. [CrossRef] [PubMed]
    [Google Scholar]
  23. Igakura T., Stinchcombe J. C., Goon P. K. C., Taylor G. P., Weber J. N., Griffiths G. M., Tanaka Y., Osame M., Bangham C. R. M.. ( 2003; ). Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. . Science 299:, 1713–1716. [CrossRef] [PubMed]
    [Google Scholar]
  24. Ikebuchi R., Konnai S., Shirai T., Sunden Y., Murata S., Onuma M., Ohashi K.. ( 2011; ). Increase of cells expressing PD-L1 in bovine leukemia virus infection and enhancement of anti-viral immune responses in vitro via PD-L1 blockade. . Vet Res 42:, 103. [CrossRef] [PubMed]
    [Google Scholar]
  25. Ikebuchi R., Konnai S., Okagawa T., Yokoyama K., Nakajima C., Suzuki Y., Murata S., Ohashi K.. ( 2013; ). Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. . Vet Res 44:, 59. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ikebuchi R., Konnai S., Okagawa T., Yokoyama K., Nakajima C., Suzuki Y., Murata S., Ohashi K.. ( 2014; ). Influence of PD-L1 cross-linking on cell death in PD-L1-expressing cell lines and bovine lymphocytes. . Immunology [Epub ahead of print]. [CrossRef] [PubMed]
    [Google Scholar]
  27. Isnardi I., Ng Y.-S., Menard L., Meyers G., Saadoun D., Srdanovic I., Samuels J., Berman J., Buckner J. H.. & other authors ( 2010; ). Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones. . Blood 115:, 5026–5036. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jochum W., Passegué E., Wagner E. F.. ( 2001; ). AP-1 in mouse development and tumorigenesis. . Oncogene 20:, 2401–2412. [CrossRef] [PubMed]
    [Google Scholar]
  29. Johnston E. R., Powers M. A., Kidd L. C., Radke K.. ( 1996; ). Peripheral blood mononuclear cells from sheep infected with a variant of bovine leukemia virus synthesize envelope glycoproteins but fail to induce syncytia in culture. . J Virol 70:, 6296–6303.[PubMed]
    [Google Scholar]
  30. Jonkers J., Korswagen H. C., Acton D., Breuer M., Berns A.. ( 1997; ). Activation of a novel proto-oncogene, Frat1, contributes to progression of mouse T-cell lymphomas. . EMBO J 16:, 441–450. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kerkhofs P., Adam E., Droogmans L., Portetelle D., Mammerickx M., Burny A., Kettmann R., Willems L.. ( 1996; ). Cellular pathways involved in the ex vivo expression of bovine leukemia virus. . J Virol 70:, 2170–2177.[PubMed]
    [Google Scholar]
  32. Kidd L. C., Radke K.. ( 1996; ). Lymphocyte activators elicit bovine leukemia virus expression differently as asymptomatic infection progresses. . Virology 217:, 167–177. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kobayashi S., Tian Y., Ohno N., Yuji K., Ishigaki T., Isobe M., Tsuda M., Oyaizu N., Watanabe E.. & other authors ( 2013; ). The CD3 versus CD7 plot in multicolor flow cytometry reflects progression of disease stage in patients infected with HTLV-I. . PLoS ONE 8:, e53728. [CrossRef] [PubMed]
    [Google Scholar]
  34. Küppers R.. ( 2003; ). B cells under influence: transformation of B cells by Epstein–Barr virus. . Nat Rev Immunol 3:, 801–812. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lagarias D. M., Radke K.. ( 1989; ). Transcriptional activation of bovine leukemia virus in blood cells from experimentally infected, asymptomatic sheep with latent infections. . J Virol 63:, 2099–2107.[PubMed]
    [Google Scholar]
  36. Lavanya M., Kinet S., Montel-Hagen A., Mongellaz C., Battini J. L., Sitbon M., Taylor N.. ( 2008; ). Cell surface expression of the bovine leukemia virus-binding receptor on B and T lymphocytes is induced by receptor engagement. . J Immunol 181:, 891–898. [CrossRef] [PubMed]
    [Google Scholar]
  37. Manel N., Kim F. J., Kinet S., Taylor N., Sitbon M., Battini J. L.. ( 2003; ). The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. . Cell 115:, 449–459. [CrossRef] [PubMed]
    [Google Scholar]
  38. Meirom R., Moss S., Brenner J.. ( 1997; ). Bovine leukemia virus-gp51 antigen expression is associated with CD5 and IgM markers on infected lymphocytes. . Vet Immunol Immunopathol 59:, 113–119. [CrossRef] [PubMed]
    [Google Scholar]
  39. Merimi M., Klener P., Szynal M., Cleuter Y., Bagnis C., Kerkhofs P., Burny A., Martiat P., Van den Broeke A.. ( 2007a; ). Complete suppression of viral gene expression is associated with the onset and progression of lymphoid malignancy: observations in bovine leukemia virus-infected sheep. . Retrovirology 4:, 51. [CrossRef] [PubMed]
    [Google Scholar]
  40. Merimi M., Klener P., Szynal M., Cleuter Y., Kerkhofs P., Burny A., Martiat P., Van den Broeke A.. ( 2007b; ). Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. . J Virol 81:, 5929–5939. [CrossRef] [PubMed]
    [Google Scholar]
  41. Milde-Langosch K.. ( 2005; ). The Fos family of transcription factors and their role in tumourigenesis. . Eur J Cancer 41:, 2449–2461. [CrossRef] [PubMed]
    [Google Scholar]
  42. Mirsky M. L., Olmstead C. A., Da Y., Lewin H. A.. ( 1996; ). The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages of infection. . J Virol 70:, 2178–2183.[PubMed]
    [Google Scholar]
  43. Mukwedeya D. T., Takamatsu H., Parkhouse R. M. E.. ( 1993; ). Identification of bovine B cell reactive and B cell specific monoclonal antibodies. . Vet Immunol Immunopathol 39:, 177–186. [CrossRef] [PubMed]
    [Google Scholar]
  44. Naessens J., Howard C. J., Hopkins J.. ( 1997; ). Nomenclature and characterization of leukocyte differentiation antigens in ruminants. . Immunol Today 18:, 365–368. [CrossRef] [PubMed]
    [Google Scholar]
  45. Niwa H., Yamamura K., Miyazaki J.. ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. . Gene 108:, 193–199. [CrossRef] [PubMed]
    [Google Scholar]
  46. Powers M. A., Radke K.. ( 1992; ). Activation of bovine leukemia virus transcription in lymphocytes from infected sheep: rapid transition through early to late gene expression. . J Virol 66:, 4769–4777.[PubMed]
    [Google Scholar]
  47. Quách T. D., Manjarrez-Orduño N., Adlowitz D. G., Silver L., Yang H., Wei C., Milner E. C., Sanz I.. ( 2011; ). Anergic responses characterize a large fraction of human autoreactive naive B cells expressing low levels of surface IgM. . J Immunol 186:, 4640–4648. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sagata N., Yasunaga T., Tsuzuku-Kawamura J., Ohishi K., Ogawa Y., Ikawa Y.. ( 1985; ). Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. . Proc Natl Acad Sci U S A 82:, 677–681. [CrossRef] [PubMed]
    [Google Scholar]
  49. Saito Y. D., Jensen A. R., Salgia R., Posadas E. M.. ( 2010; ). Fyn: a novel molecular target in cancer. . Cancer 116:, 1629–1637. [CrossRef] [PubMed]
    [Google Scholar]
  50. Schwartz I., Bensaid A., Polack B., Perrin B., Berthelemy M., Levy D.. ( 1994; ). In vivo leukocyte tropism of bovine leukemia virus in sheep and cattle. . J Virol 68:, 4589–4596.[PubMed]
    [Google Scholar]
  51. So L., Fruman D. A.. ( 2012; ). PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. . Biochem J 442:, 465–481. [CrossRef] [PubMed]
    [Google Scholar]
  52. Teague B. N., Pan Y., Mudd P. A., Nakken B., Zhang Q., Szodoray P., Kim-Howard X., Wilson P. C., Farris A. D.. ( 2007; ). Cutting edge: transitional T3 B cells do not give rise to mature B cells, have undergone selection, and are reduced in murine lupus. . J Immunol 178:, 7511–7515. [CrossRef] [PubMed]
    [Google Scholar]
  53. Trentin L., Cabrelle A., Facco M., Carollo D., Miorin M., Tosoni A., Pizzo P., Binotto G., Nicolardi L.. & other authors ( 2004; ). Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. . Blood 104:, 502–508. [CrossRef] [PubMed]
    [Google Scholar]
  54. Van den Broeke A., Cleuter Y., Chen G., Portetelle D., Mammerickx M., Zagury D., Fouchard M., Coulombel L., Kettmann R., Burny A.. ( 1988; ). Even transcriptionally competent proviruses are silent in bovine leukemia virus-induced sheep tumor cells. . Proc Natl Acad Sci U S A 85:, 9263–9267. [CrossRef] [PubMed]
    [Google Scholar]
  55. Willard-Gallo K. E., Furtado M., Burny A., Wolinsky S. M.. ( 2001; ). Down-modulation of TCR/CD3 surface complexes after HIV-1 infection is associated with differential expression of the viral regulatory genes. . Eur J Immunol 31:, 969–979. [CrossRef] [PubMed]
    [Google Scholar]
  56. Yasuda M., Jenne C. N., Kennedy L. J., Reynolds J. D.. ( 2006; ). The sheep and cattle Peyer’s patch as a site of B-cell development. . Vet Res 37:, 401–415. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zikherman J., Parameswaran R., Weiss A.. ( 2012; ). Endogenous antigen tunes the responsiveness of naive B cells but not T cells. . Nature 489:, 160–164. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065011-0
Loading
/content/journal/jgv/10.1099/vir.0.065011-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error