1887

Abstract

Despite tremendous efforts to improve the methodology for constructing flavivirus infectious cDNAs, the manipulation of flavivirus cDNAs remains a difficult task in bacteria. Here, we successfully propagated DNA-launched type 2 dengue virus (DENV2) and Japanese encephalitis virus (JEV) infectious cDNAs by introducing seven repeats of the tetracycline-response element (7×TRE) and a minimal cytomegalovirus (CMVmin) promoter upstream of the viral genome. Insertion of the 7×TRE-CMVmin sequence upstream of the DENV2 or JEV genome decreased the cryptic promoter (ECP) activity of the viral genome in bacteria, as measured using fusion constructs containing DENV2 or JEV segments and the reporter gene luciferase in an empty vector. The growth kinetics of recombinant viruses derived from DNA-launched DENV2 and JEV infectious cDNAs were similar to those of parental viruses. Similarly, RNA-launched DENV2 infectious cDNAs were generated by inserting 7×TRE-CMVmin, five repeats of the GAL4 upstream activating sequence, or five repeats of HI linkers upstream of the DENV2 genome. All three tandem repeat sequences decreased the ECP activity of the DENV2 genome in bacteria. Notably, 7×TRE-CMVmin stabilized RNA-launched JEV infectious cDNAs and reduced the ECP activity of the JEV genome in bacteria. The growth kinetics of recombinant viruses derived from RNA-launched DENV2 and JEV infectious cDNAs displayed patterns similar to those of the parental viruses. These results support a novel methodology for constructing flavivirus infectious cDNAs, which will facilitate research in virology, viral pathogenesis and vaccine development of flaviviruses and other RNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064915-0
2014-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/7/1493.html?itemId=/content/journal/jgv/10.1099/vir.0.064915-0&mimeType=html&fmt=ahah

References

  1. Ada G. L., Anderson S. G.. ( 1959; ). Yield of infective ribonucleic acid from impure Murray Valley encephalitis virus after different treatments. . Nature 183:, 799–800. [CrossRef] [PubMed]
    [Google Scholar]
  2. Antonucci T. K., Wen P., Rutter W. J.. ( 1989; ). Eukaryotic promoters drive gene expression in Escherichia coli . . J Biol Chem 264:, 17656–17659.[PubMed]
    [Google Scholar]
  3. Audsley M., Edmonds J., Liu W., Mokhonov V., Mokhonova E., Melian E. B., Prow N., Hall R. A., Khromykh A. A.. ( 2011; ). Virulence determinants between New York 99 and Kunjin strains of West Nile virus. . Virology 414:, 63–73. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beasley D. W., Whiteman M. C., Zhang S., Huang C. Y., Schneider B. S., Smith D. R., Gromowski G. D., Higgs S., Kinney R. M., Barrett A. D. T.. ( 2005; ). Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. . J Virol 79:, 8339–8347. [CrossRef] [PubMed]
    [Google Scholar]
  5. Blaney J. E. Jr, Durbin A. P., Murphy B. R., Whitehead S. S.. ( 2006; ). Development of a live attenuated dengue virus vaccine using reverse genetics. . Viral Immunol 19:, 10–32. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boyer J. C., Haenni A. L.. ( 1994; ). Infectious transcripts and cDNA clones of RNA viruses. . Virology 198:, 415–426. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijkman N., Rice C. M., Spaan W. J.. ( 2003; ). A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. . J Gen Virol 84:, 1261–1268. [CrossRef] [PubMed]
    [Google Scholar]
  8. Burke P. V., Kwast K. E.. ( 2000; ). Oxygen dependence of expression of cytochrome c and cytochrome c oxidase genes in S. cerevisiae . . Adv Exp Med Biol 475:, 197–208. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cai Z., Zhang C., Chang K. S., Jiang J., Ahn B. C., Wakita T., Liang T. J., Luo G.. ( 2005; ). Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. . J Virol 79:, 13963–13973. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chambers T. J., Hahn C. S., Galler R., Rice C. M.. ( 1990; ). Flavivirus genome organization, expression, and replication. . Annu Rev Microbiol 44:, 649–688. [CrossRef] [PubMed]
    [Google Scholar]
  11. Davis M. G., Huang E. S.. ( 1988; ). Transfer and expression of plasmids containing human cytomegalovirus immediate-early gene 1 promoter-enhancer sequences in eukaryotic and prokaryotic cells. . Biotechnol Appl Biochem 10:, 6–12.[PubMed]
    [Google Scholar]
  12. Edmonds J., van Grinsven E., Prow N., Bosco-Lauth A., Brault A. C., Bowen R. A., Hall R. A., Khromykh A. A.. ( 2013; ). A novel bacterium-free method for generation of flavivirus infectious DNA by circular polymerase extension reaction allows accurate recapitulation of viral heterogeneity. . J Virol 87:, 2367–2372. [CrossRef] [PubMed]
    [Google Scholar]
  13. Falgout B., Pethel M., Zhang Y. M., Lai C. J.. ( 1991; ). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. . J Virol 65:, 2467–2475.[PubMed]
    [Google Scholar]
  14. Gemayel R., Vinces M. D., Legendre M., Verstrepen K. J.. ( 2010; ). Variable tandem repeats accelerate evolution of coding and regulatory sequences. . Annu Rev Genet 44:, 445–477. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gubler D. J.. ( 1989; ). Aedes aegypti and Aedes aegypti-borne disease control in the 1990s: top down or bottom up. Charles Franklin Craig Lecture. . Am J Trop Med Hyg 40:, 571–578.[PubMed]
    [Google Scholar]
  16. Guzmán M. G., Kourí G.. ( 2002; ). Dengue: an update. . Lancet Infect Dis 2:, 33–42. [CrossRef] [PubMed]
    [Google Scholar]
  17. Guzmán M. G., Kourí G.. ( 2004; ). Dengue diagnosis, advances and challenges. . Int J Infect Dis 8:, 69–80. [CrossRef] [PubMed]
    [Google Scholar]
  18. Halstead S. B.. ( 1980; ). Dengue haemorrhagic fever – a public health problem and a field for research. . Bull World Health Organ 58:, 1–21.[PubMed]
    [Google Scholar]
  19. Henchal E. A., Gentry M. K., McCown J. M., Brandt W. E.. ( 1982; ). Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. . Am J Trop Med Hyg 31:, 830–836.[PubMed]
    [Google Scholar]
  20. Kapoor M., Zhang L., Mohan P. M., Padmanabhan R.. ( 1995; ). Synthesis and characterization of an infectious dengue virus type-2 RNA genome (New Guinea C strain). . Gene 162:, 175–180. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kaufman B. M., Summers P. L., Dubois D. R., Cohen W. H., Gentry M. K., Timchak R. L., Burke D. S., Eckels K. H.. ( 1989; ). Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. . Am J Trop Med Hyg 41:, 576–580.[PubMed]
    [Google Scholar]
  22. Kelly E. P., Puri B., Sun W., Falgout B.. ( 2010; ). Identification of mutations in a candidate dengue 4 vaccine strain 341750 PDK20 and construction of a full-length cDNA clone of the PDK20 vaccine candidate. . Vaccine 28:, 3030–3037. [CrossRef] [PubMed]
    [Google Scholar]
  23. Khromykh A. A., Varnavski A. N., Sedlak P. L., Westaway E. G.. ( 2001; ). Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. . J Virol 75:, 4633–4640. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kinney R. M., Butrapet S., Chang G. J. J., Tsuchiya K. R., Roehrig J. T., Bhamarapravati N., Gubler D. J.. ( 1997; ). Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. . Virology 230:, 300–308. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kohara M., Abe S., Kuge S., Semler B. L., Komatsu T., Arita M., Itoh H., Nomoto A.. ( 1986; ). An infectious cDNA clone of the poliovirus Sabin strain could be used as a stable repository and inoculum for the oral polio live vaccine. . Virology 151:, 21–30. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lai C. J., Monath T. P.. ( 2003; ). Chimeric flaviviruses: novel vaccines against dengue fever, tick-borne encephalitis, and Japanese encephalitis. . Adv Virus Res 61:, 469–509. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lai C. J., Zhao B. T., Hori H., Bray M.. ( 1991; ). Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. . Proc Natl Acad Sci U S A 88:, 5139–5143. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lewin A., Mayer M., Chusainow J., Jacob D., Appel B.. ( 2005; ). Viral promoters can initiate expression of toxin genes introduced into Escherichia coli . . BMC Biotechnol 5:, 19. [CrossRef] [PubMed]
    [Google Scholar]
  29. Lin Y. L., Liao C. L., Chen L. K., Yeh C. T., Liu C. I., Ma S. H., Huang Y. Y., Huang Y. L., Kao C. L., King C. C.. ( 1998; ). Study of dengue virus infection in SCID mice engrafted with human K562 cells. . J Virol 72:, 9729–9737.[PubMed]
    [Google Scholar]
  30. Lindenbach B., Murray C., Thiel H., Rice C.. ( 2013; ). Flaviviridae. . In Fields Virology 6th Edition., Vol. 1. Edited by Knipe D. M., Howley P. M... Philadelphia, PA:: Lippincott Williams & Wilkins;. 712–746.
    [Google Scholar]
  31. Mackenzie J. S., Gubler D. J., Petersen L. R.. ( 2004; ). Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. . Nat Med 10: (Suppl.), S98–S109. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mandl C. W., Ecker M., Holzmann H., Kunz C., Heinz F. X.. ( 1997; ). Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. . J Gen Virol 78:, 1049–1057.[PubMed]
    [Google Scholar]
  33. Miroux B., Walker J. E.. ( 1996; ). Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. . J Mol Biol 260:, 289–298. [CrossRef] [PubMed]
    [Google Scholar]
  34. Mishin V. P., Cominelli F., Yamshchikov V. F.. ( 2001; ). A ‘minimal’ approach in design of flavivirus infectious DNA. . Virus Res 81:, 113–123. [CrossRef] [PubMed]
    [Google Scholar]
  35. Morens D. M., Halstead S. B., Repik P. M., Putvatana R., Raybourne N.. ( 1985; ). Simplified plaque reduction neutralization assay for dengue viruses by semimicro methods in BHK-21 cells: comparison of the BHK suspension test with standard plaque reduction neutralization. . J Clin Microbiol 22:, 250–254.[PubMed]
    [Google Scholar]
  36. Pierson T. C., Diamond M. S.. ( 2013; ). Flaviviruses. . In Fields Virology, , 6th edn., vol. 1, pp. 747–798. Edited by Knipe D. M., Howley P. M... Philadelphia. PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  37. Pierson T. C., Diamond M. S., Ahmed A. A., Valentine L. E., Davis C. W., Samuel M. A., Hanna S. L., Puffer B. A., Doms R. W.. ( 2005; ). An infectious West Nile virus that expresses a GFP reporter gene. . Virology 334:, 28–40. [CrossRef] [PubMed]
    [Google Scholar]
  38. Pinheiro F. P.. ( 1989; ). Dengue in the Americas, 1980–1987. . Epidemiol Bull 10:, 1–8.[PubMed]
    [Google Scholar]
  39. Pinheiro F. P., Corber S. J.. ( 1997; ). Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. . World Health Stat Q 50:, 161–169.[PubMed]
    [Google Scholar]
  40. Polo S., Ketner G., Levis R., Falgout B.. ( 1997; ). Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. . J Virol 71:, 5366–5374.[PubMed]
    [Google Scholar]
  41. Proctor G. N.. ( 1994; ). Mathematics of microbial plasmid instability and subsequent differential growth of plasmid-free and plasmid-containing cells, relevant to the analysis of experimental colony number data. . Plasmid 32:, 101–130. [CrossRef] [PubMed]
    [Google Scholar]
  42. Pu S. Y., Wu R. H., Yang C. C., Jao T. M., Tsai M. H., Wang J. C., Lin H. M., Chao Y. S., Yueh A.. ( 2011; ). Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. . J Virol 85:, 2927–2941. [CrossRef] [PubMed]
    [Google Scholar]
  43. Rice C. M., Grakoui A., Galler R., Chambers T. J.. ( 1989; ). Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. . New Biol 1:, 285–296.[PubMed]
    [Google Scholar]
  44. Ruggli N., Rice C. M.. ( 1999; ). Functional cDNA clones of the Flaviviridae: strategies and applications. . Adv Virus Res 53:, 183–207. [CrossRef] [PubMed]
    [Google Scholar]
  45. Schoggins J. W., Dorner M., Feulner M., Imanaka N., Murphy M. Y., Ploss A., Rice C. M.. ( 2012; ). Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro . . Proc Natl Acad Sci U S A 109:, 14610–14615. [CrossRef] [PubMed]
    [Google Scholar]
  46. Simmons C. P., Farrar J. J., Nguyen V. V., Wills B.. ( 2012; ). Dengue. . N Engl J Med 366:, 1423–1432. [CrossRef] [PubMed]
    [Google Scholar]
  47. Siridechadilok B., Gomutsukhavadee M., Sawaengpol T., Sangiambut S., Puttikhunt C., Chin-inmanu K., Suriyaphol P., Malasit P., Screaton G., Mongkolsapaya J.. ( 2013; ). A simplified positive-sense-RNA virus construction approach that enhances analysis throughput. . J Virol 87:, 12667–12674. [CrossRef] [PubMed]
    [Google Scholar]
  48. Sriburi R., Keelapang P., Duangchinda T., Pruksakorn S., Maneekarn N., Malasit P., Sittisombut N.. ( 2001; ). Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. . J Virol Methods 92:, 71–82. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sumiyoshi H., Hoke C. H., Trent D. W.. ( 1992; ). Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. . J Virol 66:, 5425–5431.[PubMed]
    [Google Scholar]
  50. Suzuki R., de Borba L., Duarte dos Santos C. N., Mason P. W.. ( 2007; ). Construction of an infectious cDNA clone for a Brazilian prototype strain of dengue virus type 1: characterization of a temperature-sensitive mutation in NS1. . Virology 362:, 374–383. [CrossRef] [PubMed]
    [Google Scholar]
  51. Usme-Ciro J. A., Lopera J. A., Enjuanes L., Almazán F., Gallego-Gomez J. C.. ( 2014; ). Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. . Virus Res 180:, 12–22. [CrossRef] [PubMed]
    [Google Scholar]
  52. van den Hurk A. F., Ritchie S. A., Mackenzie J. S.. ( 2009; ). Ecology and geographical expansion of Japanese encephalitis virus. . Annu Rev Entomol 54:, 17–35. [CrossRef] [PubMed]
    [Google Scholar]
  53. Ward R., Davidson A. D.. ( 2008; ). Reverse genetics and the study of dengue virus. . Future Med. Future Virol 3:, 279–290. [CrossRef]
    [Google Scholar]
  54. Yamshchikov V., Mishin V., Cominelli F.. ( 2001; ). A new strategy in design of (+)RNA virus infectious clones enabling their stable propagation in E. coli . . Virology 281:, 272–280. [CrossRef] [PubMed]
    [Google Scholar]
  55. Yang C. C., Tsai M. H., Hu H. S., Pu S. Y., Wu R. H., Wu S. H., Lin H. M., Song J. S., Chao Y. S., Yueh A.. ( 2013; ). Characterization of an efficient dengue virus replicon for development of assays of discovery of small molecules against dengue virus. . Antiviral Res 98:, 228–241. [CrossRef] [PubMed]
    [Google Scholar]
  56. Yun S. I., Kim S. Y., Rice C. M., Lee Y. M.. ( 2003; ). Development and application of a reverse genetics system for Japanese encephalitis virus. . J Virol 77:, 6450–6465. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zhang F., Huang Q., Ma W., Jiang S., Fan Y., Zhang H.. ( 2001; ). Amplification and cloning of the full-length genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. . J Virol Methods 96:, 171–182. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zhao Z., Date T., Li Y., Kato T., Miyamoto M., Yasui K., Wakita T.. ( 2005; ). Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. . J Gen Virol 86:, 2209–2220. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.064915-0
Loading
/content/journal/jgv/10.1099/vir.0.064915-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error