1887

Abstract

Papillomaviruses are epitheliotropic viruses that have circular dsDNA genomes encapsidated in non-enveloped virions. They have been found to infect a variety of mammals, reptiles and birds, but so far they have not been found in amphibians. Using a next-generation sequencing assembly contig-informed recovery, we cloned and Sanger sequenced the complete genome of a novel papillomavirus from the faecal matter of Adélie penguins () nesting on Ross Island, Antarctica. The genome had all the usual features of a papillomavirus and an E9 ORF encoding a protein of unknown function that is found in all avian papillomaviruses to date. This novel papillomavirus genome shared ~60 % pairwise identity with the genomes of the other three known avian papillomaviruses: 1 (FcPV1), 1 (FlPV1) and 1. Pairwise identity analysis and phylogenetic analysis of the major capsid protein gene clearly indicated that it represents a novel species, which we named 1 (PaCV1). No evidence of recombination was detected in the genome of PaCV1, but we did detect a recombinant region (119 nt) in the E6 gene of FlPV1 with the recombinant region being derived from ancestral FcPV1-like sequences. Previously only paramyxoviruses, orthomyxoviruses and avian pox viruses have been genetically identified in penguins; however, the majority of penguin viral identifications have been based on serology or histology. This is the first report, to our knowledge, of a papillomavirus associated with a penguin species.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064436-0
2014-06-01
2020-07-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/6/1352.html?itemId=/content/journal/jgv/10.1099/vir.0.064436-0&mimeType=html&fmt=ahah

References

  1. Abascal F., Zardoya R., Posada D. 2005; ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105 [CrossRef][PubMed]
    [Google Scholar]
  2. Ainley D. G. 2002 The Adélie Penguin: Bellwether of Climate Change New York: Columbia University Press;
    [Google Scholar]
  3. Alexander D. J., Manvell R. J., Collins M. S., Brockman S. J., Westbury H. A., Morgan I., Austin F. J. 1989; Characterization of paramyxoviruses isolated from penguins in Antarctica and sub-Antarctica during 1976–1979. Arch Virol 109:135–143 [CrossRef][PubMed]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  5. Angulo M., Carvajal-Rodríguez A. 2007; Evidence of recombination within human alpha-papillomavirus. Virol J 4:33 [CrossRef][PubMed]
    [Google Scholar]
  6. Anisimova M., Gascuel O. 2006; Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552 [CrossRef][PubMed]
    [Google Scholar]
  7. Austin F. J., Webster R. G. 1993; Evidence of ortho- and paramyxoviruses in fauna from Antarctica. J Wildl Dis 29:568–571 [CrossRef][PubMed]
    [Google Scholar]
  8. Baker T. S., Newcomb W. W., Olson N. H., Cowsert L. M., Olson C., Brown J. C. 1991; Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60:1445–1456 [CrossRef][PubMed]
    [Google Scholar]
  9. Ballard G., Toniolo V., Ainley D. G., Parkinson C. L., Arrigo K. R., Trathan P. N. 2010; Responding to climate change: Adélie penguins confront astronomical and ocean boundaries. Ecology 91:2056–2069 [CrossRef][PubMed]
    [Google Scholar]
  10. Baumeister E., Leotta G., Pontoriero A., Campos A., Montalti D., Vigo G., Pecoraro M., Savy V. 2004; Serological evidences of influenza A virus infection in Antarctica migratory birds. Int Congr Ser 1263:737–740 [CrossRef]
    [Google Scholar]
  11. Bernard H. U. 2013; Taxonomy and phylogeny of papillomaviruses: an overview and recent developments. Infect Genet Evol 18:357–361 [CrossRef][PubMed]
    [Google Scholar]
  12. Bernard H. U., Calleja-Macias I. E., Dunn S. T. 2006; Genome variation of human papillomavirus types: phylogenetic and medical implications. Int J Cancer 118:1071–1076 [CrossRef][PubMed]
    [Google Scholar]
  13. Bernard H.-U., Burk R. D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E.-M. 2010; Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79 [CrossRef][PubMed]
    [Google Scholar]
  14. Boni M. F., Posada D., Feldman M. W. 2007; An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176:1035–1047 [CrossRef][PubMed]
    [Google Scholar]
  15. Bravo I. G., Alonso A. 2007; Phylogeny and evolution of papillomaviruses based on the E1 and E2 proteins. Virus Genes 34:249–262 [CrossRef][PubMed]
    [Google Scholar]
  16. Carulei O., Douglass N., Williamson A. L. 2009; Phylogenetic analysis of three genes of Penguinpox virus corresponding to Vaccinia virus G8R (VLTF-1), A3L (P4b) and H3L reveals that it is most closely related to Turkeypox virus, Ostrichpox virus and Pigeonpox virus. Virol J 6:52 [CrossRef][PubMed]
    [Google Scholar]
  17. Carvajal-Rodríguez A. 2008; Detecting recombination and diversifying selection in human alpha-papillomavirus. Infect Genet Evol 8:689–692 [CrossRef][PubMed]
    [Google Scholar]
  18. Cole S. T., Danos O. 1987; Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome: phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol 193:599–608 [CrossRef][PubMed]
    [Google Scholar]
  19. Dayaram A., Goldstien S., Zawar-Reza P., Gomez C., Harding J. S., Varsani A. 2013; Identification of starling circovirus in an estuarine mollusc (Amphibola crenata) in New Zealand using metagenomic approaches. Genome Announc 1:e00278-13 [CrossRef][PubMed]
    [Google Scholar]
  20. Dayaram A., Galatowitsch M., Harding J. S., Argüello-Astorga G. R., Varsani A. 2014; Novel circular DNA viruses identified in Procordulia grayi and Xanthocnemis zealandica larvae using metagenomic approaches. Infect Genet Evol 22:134–141 [CrossRef][PubMed]
    [Google Scholar]
  21. de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hausen H. 2004; Classification of papillomaviruses. Virology 324:17–27 [CrossRef][PubMed]
    [Google Scholar]
  22. Duffy S., Holmes E. C. 2008; Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus tomato yellow leaf curl virus. J Virol 82:957–965 [CrossRef][PubMed]
    [Google Scholar]
  23. Duffy S., Holmes E. C. 2009; Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J Gen Virol 90:1539–1547 [CrossRef][PubMed]
    [Google Scholar]
  24. Edgar R. C. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  25. Firth C., Charleston M. A., Duffy S., Shapiro B., Holmes E. C. 2009; Insights into the evolutionary history of an emerging livestock pathogen: porcine circovirus 2. J Virol 83:12813–12821 [CrossRef][PubMed]
    [Google Scholar]
  26. García-Vallvé S., Alonso A., Bravo I. G. 2005; Papillomaviruses: different genes have different histories. Trends Microbiol 13:514–521 [CrossRef][PubMed]
    [Google Scholar]
  27. Gardner H., Kerry K., Riddle M., Brouwer S., Gleeson L. 1997; Poultry virus infection in Antarctic penguins. Nature 387:245 [CrossRef][PubMed]
    [Google Scholar]
  28. Gibbs M. J., Armstrong J. S., Gibbs A. J. 2000; Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16:573–582 [CrossRef][PubMed]
    [Google Scholar]
  29. Gottschling M., Bravo I. G., Schulz E., Bracho M. A., Deaville R., Jepson P. D., Van Bressem M.-F., Stockfleth E., Nindl I. 2011a; Modular organizations of novel cetacean papillomaviruses. Mol Phylogenet Evol 59:34–42 [CrossRef][PubMed]
    [Google Scholar]
  30. Gottschling M., Göker M., Stamatakis A., Bininda-Emonds O. R., Nindl I., Bravo I. G. 2011b; Quantifying the phylodynamic forces driving papillomavirus evolution. Mol Biol Evol 28:2101–2113 [CrossRef][PubMed]
    [Google Scholar]
  31. Grigoras I., Timchenko T., Grande-Pérez A., Katul L., Vetten H. J., Gronenborn B. 2010; High variability and rapid evolution of a nanovirus. J Virol 84:9105–9117 [CrossRef][PubMed]
    [Google Scholar]
  32. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  33. Harkins G. W., Delport W., Duffy S., Wood N., Monjane A. L., Owor B. E., Donaldson L., Saumtally S., Triton G. other authors 2009; Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts. Virol J 6:104 [CrossRef][PubMed]
    [Google Scholar]
  34. Harkins G. W., Martin D. P., Christoffels A., Varsani A. 2014; Towards inferring the global movement of beak and feather disease virus. Virology 450-451:24–33 [CrossRef][PubMed]
    [Google Scholar]
  35. Herbst L. H., Lenz J., Van Doorslaer K., Chen Z., Stacy B. A., Wellehan J. F. Jr, Manire C. A., Burk R. D. 2009; Genomic characterization of two novel reptilian papillomaviruses, Chelonia mydas papillomavirus 1 and Caretta caretta papillomavirus 1. Virology 383:131–135 [CrossRef][PubMed]
    [Google Scholar]
  36. Kane O. J., Uhart M. M., Rago V., Pereda A. J., Smith J. R., Van Buren A., Clark J. A., Boersma P. D. 2012; Avian pox in Magellanic penguins (Spheniscus magellanicus). J Wildl Dis 48:790–794 [CrossRef][PubMed]
    [Google Scholar]
  37. Katoh K., Standley D. M. 2013; mafft multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  38. Kincaid A. L., Bunton T. E., Cranfield M. 1988; Herpesvirus-like infection in black-footed penguins (Spheniscus demersus). J Wildl Dis 24:173–175 [CrossRef][PubMed]
    [Google Scholar]
  39. Kraberger S., Stainton D., Dayaram A., Zawar-Reza P., Gomez C., Harding J. S., Varsani A. 2013; Discovery of Sclerotinia sclerotiorum hypovirulence-associated virus-1 in urban river sediments of Heathcote and Styx Rivers in Christchurch City, New Zealand. Genome Announc 1:e00559-13 [CrossRef][PubMed]
    [Google Scholar]
  40. Lange C. E., Favrot C., Ackermann M., Gull J., Vetsch E., Tobler K. 2011; Novel snake papillomavirus does not cluster with other non-mammalian papillomaviruses. Virol J 8:436 [CrossRef][PubMed]
    [Google Scholar]
  41. Lefeuvre P., Martin D. P., Harkins G., Lemey P., Gray A. J. A., Meredith S., Lakay F., Monjane A., Lett J. M. other authors 2010; The spread of tomato yellow leaf curl virus from the Middle East to the world. PLoS Pathog 6:e1001164 [CrossRef][PubMed]
    [Google Scholar]
  42. López-Bueno A., Tamames J., Velázquez D., Moya A., Quesada A., Alcamí A. 2009; High diversity of the viral community from an Antarctic lake. Science 326:858–861 [CrossRef][PubMed]
    [Google Scholar]
  43. Lyver P. O. B., Barron M., Barton K. J., Ainley D. G., Pollard A., Gordon S., McNeil G., Ballard G., Wilson P. R. 2014; Trends in the breeding population of Adélie penguins (Pygoscelis adeliae) in the Western Ross Sea, 1981–2012: a coincidence of climate and resource extraction effects. PLoS ONE 9:e91188 [CrossRef]
    [Google Scholar]
  44. Martin D., Rybicki E. 2000; rdp: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563 [CrossRef][PubMed]
    [Google Scholar]
  45. Martin D. P., Posada D., Crandall K. A., Williamson C. 2005; A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21:98–102 [CrossRef][PubMed]
    [Google Scholar]
  46. Martin D. P., Lemey P., Lott M., Moulton V., Posada D., Lefeuvre P. 2010; rdp3: a flexible and fast computer program for analyzing recombination. Bioinformatics 26:2462–2463 [CrossRef][PubMed]
    [Google Scholar]
  47. Martin D. P., Biagini P., Lefeuvre P., Golden M., Roumagnac P., Varsani A. 2011; Recombination in eukaryotic single stranded DNA viruses. Viruses 3:1699–1738 [CrossRef][PubMed]
    [Google Scholar]
  48. McBride A. A. 2013; The papillomavirus E2 proteins. Virology 445:57–79 [CrossRef][PubMed]
    [Google Scholar]
  49. Miller P. J., Afonso C. L., Spackman E., Scott M. A., Pedersen J. C., Senne D. A., Brown J. D., Fuller C. M., Uhart M. M. other authors 2010; Evidence for a new avian paramyxovirus serotype 10 detected in rockhopper penguins from the Falkland Islands. J Virol 84:11496–11504 [CrossRef][PubMed]
    [Google Scholar]
  50. Morgan I. R., Westbury H. A. 1981; Virological studies of Adelie penguins (Pygoscelis adeliae) in Antarctica. Avian Dis 25:1019–1026 [CrossRef][PubMed]
    [Google Scholar]
  51. Morgan I. R., Westbury H. A. 1988; Studies of viruses in penguins in the Vestfold Hills. Hydrobiologia 165:263–269 [CrossRef]
    [Google Scholar]
  52. Morgan I. R., Westbury H. A., Caple I. W., Campbell J. 1981; A survey of virus infection in sub-Antarctic penguins on Macquarie Island, Southern Ocean. Aust Vet J 57:333–335 [CrossRef][PubMed]
    [Google Scholar]
  53. Morgan I. R., Westbury H. A., Campbell J. 1985; Viral infections of little blue penguins (Eudyptula minor) along the southern coast of Australia. J Wildl Dis 21:193–198 [CrossRef][PubMed]
    [Google Scholar]
  54. Muhire B., Martin D. P., Brown J. K., Navas-Castillo J., Moriones E., Zerbini F. M., Rivera-Bustamante R., Malathi V. G., Briddon R. W., Varsani A. 2013; A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol 158:1411–1424 [CrossRef][PubMed]
    [Google Scholar]
  55. Narechania A., Chen Z., DeSalle R., Burk R. D. 2005a; Phylogenetic incongruence among oncogenic genital alpha human papillomaviruses. J Virol 79:15503–15510 [CrossRef][PubMed]
    [Google Scholar]
  56. Narechania A., Terai M., Burk R. D. 2005b; Overlapping reading frames in closely related human papillomaviruses result in modular rates of selection within E2. J Gen Virol 86:1307–1313 [CrossRef][PubMed]
    [Google Scholar]
  57. Padidam M., Sawyer S., Fauquet C. M. 1999; Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225 [CrossRef][PubMed]
    [Google Scholar]
  58. Park Y. M., Kim J. H., Gu S. H., Lee S. Y., Lee M. G., Kang Y. K., Kang S. H., Kim H. J., Song J. W. 2012; Full genome analysis of a novel adenovirus from the South Polar skua (Catharacta maccormicki) in Antarctica. Virology 422:144–150 [CrossRef][PubMed]
    [Google Scholar]
  59. Phan T. G., Kapusinszky B., Wang C., Rose R. K., Lipton H. L., Delwart E. L. 2011; The fecal viral flora of wild rodents. PLoS Pathog 7:e1002218 [CrossRef][PubMed]
    [Google Scholar]
  60. Posada D. 2009; Selection of models of DNA evolution with jModelTest. Methods Mol Biol 537:93–112 [CrossRef][PubMed]
    [Google Scholar]
  61. Posada D., Crandall K. A. 2001; Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci U S A 98:13757–13762 [CrossRef][PubMed]
    [Google Scholar]
  62. Rector A., Van Ranst M. 2013; Animal papillomaviruses. Virology 445:213–223 [CrossRef][PubMed]
    [Google Scholar]
  63. Rector A., Van Doorslaer K., Bertelsen M., Barker I. K., Olberg R. A., Lemey P., Sundberg J. P., Van Ranst M. 2005; Isolation and cloning of the raccoon (Procyon lotor) papillomavirus type 1 by using degenerate papillomavirus-specific primers. J Gen Virol 86:2029–2033 [CrossRef][PubMed]
    [Google Scholar]
  64. Rector A., Stevens H., Lacave G., Lemey P., Mostmans S., Salbany A., Vos M., Van Doorslaer K., Ghim S. J. other authors 2008; Genomic characterization of novel dolphin papillomaviruses provides indications for recombination within the Papillomaviridae . Virology 378:151–161 [CrossRef][PubMed]
    [Google Scholar]
  65. Schulz E., Gottschling M., Ulrich R. G., Richter D., Stockfleth E., Nindl I. 2012; Isolation of three novel rat and mouse papillomaviruses and their genomic characterization. PLoS ONE 7:e47164 [CrossRef][PubMed]
    [Google Scholar]
  66. Shah S. D., Doorbar J., Goldstein R. A. 2010; Analysis of host-parasite incongruence in papillomavirus evolution using importance sampling. Mol Biol Evol 27:1301–1314 [CrossRef][PubMed]
    [Google Scholar]
  67. Shope R. E., Hurst E. W. 1933; Infectious papillomatosis of rabbits: with a note on the histopathology. J Exp Med 58:607–624 [CrossRef][PubMed]
    [Google Scholar]
  68. Sikorski A., Argüello-Astorga G. R., Dayaram A., Dobson R. C., Varsani A. 2013a; Discovery of a novel circular single-stranded DNA virus from porcine faeces. Arch Virol 158:283–289 [CrossRef][PubMed]
    [Google Scholar]
  69. Sikorski A., Dayaram A., Varsani A. 2013b; Identification of a novel circular DNA Virus in New Zealand fur seal (Arctocephalus forsteri) fecal matter. Genome Announc 1:e00558-e13 [CrossRef][PubMed]
    [Google Scholar]
  70. Sikorski A., Kearvell J., Elkington S., Dayaram A., Argüello-Astorga G. R., Varsani A. 2013c; Novel ssDNA viruses discovered in yellow-crowned parakeet (Cyanoramphus auriceps) nesting material. Arch Virol 158:1603–1607 [CrossRef][PubMed]
    [Google Scholar]
  71. Sikorski A., Massaro M., Kraberger S., Young L. M., Smalley D., Martin D. P., Varsani A. 2013d Novel myco-like DNA viruses discovered in the faecal matter of various animals. Virus Res 177:209–216 [CrossRef][PubMed]
    [Google Scholar]
  72. Simpson J. T., Wong K., Jackman S. D., Schein J. E., Jones S. J., Birol I. 2009; ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123 [CrossRef][PubMed]
    [Google Scholar]
  73. Smith J. M. 1992; Analyzing the mosaic structure of genes. J Mol Evol 34:126–129 [CrossRef][PubMed]
    [Google Scholar]
  74. Smith K. M., Karesh W. B., Majluf P., Paredes R., Zavalaga C., Hoogesteijn Reul A., Stetter M., Braselton W. E., Puche H., Cook R. A. 2008; Health evaluation of free-ranging Humboldt penguins (Spheniscus humboldti) in Peru. Avian Dis 52:130–135 [CrossRef][PubMed]
    [Google Scholar]
  75. Swanson M. M., Reavy B., Makarova K. S., Cock P. J., Hopkins D. W., Torrance L., Koonin E. V., Taliansky M. 2012; Novel bacteriophages containing a genome of another bacteriophage within their genomes. PLoS ONE 7:e40683 [CrossRef][PubMed]
    [Google Scholar]
  76. Tachezy R., Rector A., Havelkova M., Wollants E., Fiten P., Opdenakker G., Jenson B., Sundberg J., Van Ranst M. 2002; Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV) genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus. BMC Microbiol 2:19 [CrossRef][PubMed]
    [Google Scholar]
  77. Terai M., Burk R. D. 2002; Felis domesticus papillomavirus, isolated from a skin lesion, is related to canine oral papillomavirus and contains a 1.3 kb non-coding region between the E2 and L2 open reading frames. J Gen Virol 83:2303–2307[PubMed]
    [Google Scholar]
  78. Terai M., DeSalle R., Burk R. D. 2002; Lack of canonical E6 and E7 open reading frames in bird papillomaviruses: Fringilla coelebs papillomavirus and Psittacus erithacus timneh papillomavirus. J Virol 76:10020–10023 [CrossRef][PubMed]
    [Google Scholar]
  79. Thomazelli L. M., Araujo J., Oliveira D. B., Sanfilippo L., Ferreira C. S., Brentano L., Pelizari V. H., Nakayama C., Duarte R. other authors 2010; Newcastle disease virus in penguins from King George Island on the Antarctic region. Vet Microbiol 146:155–160 [CrossRef][PubMed]
    [Google Scholar]
  80. Tornesello, M. L., Buonaguro, F. M., Meglio, A., Buonaguro, L., Beth-Giraldo, E. & Giraldo, G. (1997). Sequence variations and viral genomic state of human papillomavirus type 16 in penile carcinomas from Ugandan patients. J Gen Virol 78, 2199–2208
  81. Trus B. L., Buck C. B., Cheng N., Lowy D. R., Steven A. C., Schiller J. T. 2005; Localization of the HPV-16 minor capsid protein L2 by difference imaging. Microsc Microanal 11:Suppl. 2642–643 [CrossRef]
    [Google Scholar]
  82. Tuttle A. D., Andreadis T. G., Frasca S. Jr, Dunn J. L. 2005; Eastern equine encephalitis in a flock of African penguins maintained at an aquarium. J Am Vet Med Assoc 226:2059–2062, 2003 [CrossRef][PubMed]
    [Google Scholar]
  83. Van Doorslaer K. 2013; Evolution of the Papillomaviridae . Virology 445:11–20 [CrossRef][PubMed]
    [Google Scholar]
  84. Van Doorslaer K., Ould M’hamed Ould Sidi A., Zanier K., Rybin V., Deryckère F., Rector A., Burk R. D., Lienau E. K., van Ranst M., Travé G. 2009; Identification of unusual E6 and E7 proteins within avian papillomaviruses: cellular localization, biophysical characterization, and phylogenetic analysis. J Virol 83:8759–8770 [CrossRef][PubMed]
    [Google Scholar]
  85. Varsani A., van der Walt E., Heath L., Rybicki E. P., Williamson A. L., Martin D. P. 2006; Evidence of ancient papillomavirus recombination. J Gen Virol 87:2527–2531 [CrossRef][PubMed]
    [Google Scholar]
  86. Varsani A., Martin D. P., Navas-Castillo J., Moriones E., Hernández-Zepeda C., Idris A., Murilo Zerbini F., Brown J. K. 2014; Revisiting the classification of curtoviruses based on genome-wide pairwise identity. Arch Virol [CrossRef][PubMed]
    [Google Scholar]
  87. Woolford L., Rector A., Van Ranst M., Ducki A., Bennett M. D., Nicholls P. K., Warren K. S., Swan R. A., Wilcox G. E., O’Hara A. J. 2007; A novel virus detected in papillomas and carcinomas of the endangered western barred bandicoot (Perameles bougainville) exhibits genomic features of both the Papillomaviridae and Polyomaviridae . J Virol 81:13280–13290 [CrossRef][PubMed]
    [Google Scholar]
  88. zur Hausen H. 2009a; Papillomaviruses in the causation of human cancers – a brief historical account. Virology 384:260–265 [CrossRef][PubMed]
    [Google Scholar]
  89. zur Hausen H. 2009b; The search for infectious causes of human cancers: where and why. Virology 392:1–10 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.064436-0
Loading
/content/journal/jgv/10.1099/vir.0.064436-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error