1887

Abstract

Potyviruses represent one of the most economically important and widely distributed groups of plant viruses. Despite considerable progress towards understanding the cellular and molecular basis of their pathogenicity, many questions remain about the mechanisms by which potyviruses suppress host defences and create an optimal intracellular environment for viral translation, replication, assembly and spread. The review focuses on the multifunctional roles of potyviral proteins and their interplay with various host factors in different compartments of the infected cell. We place special emphasis on the recently discovered and currently putative mechanisms by which potyviruses subvert the normal functions of different cellular organelles in order to establish an efficient and productive infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064220-0
2014-07-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/7/1415.html?itemId=/content/journal/jgv/10.1099/vir.0.064220-0&mimeType=html&fmt=ahah

References

  1. Agbeci M., Grangeon R., Nelson R. S., Zheng H., Laliberté J. F. 2013; Contribution of host intracellular transport machineries to intercellular movement of turnip mosaic virus. PLoS Pathog 9:e1003683 [View Article][PubMed]
    [Google Scholar]
  2. Agudelo-Romero P., Carbonell P., de la Iglesia F., Carrera J., Rodrigo G., Jaramillo A., Pérez-Amador M. A., Elena S. F. 2008; Changes in the gene expression profile of Arabidopsis thaliana after infection with Tobacco etch virus. Virol J 5:92 [View Article][PubMed]
    [Google Scholar]
  3. Ahlquist P., Noueiry A. O., Lee W. M., Kushner D. B., Dye B. T. 2003; Host factors in positive-strand RNA virus genome replication. J Virol 77:8181–8186 [View Article][PubMed]
    [Google Scholar]
  4. Ala-Poikela M., Goytia E., Haikonen T., Rajamäki M. L., Valkonen J. P. 2011; Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. J Virol 85:6784–6794 [View Article][PubMed]
    [Google Scholar]
  5. Alfenas-Zerbini P., Maia I. G., Fávaro R. D., Cascardo J. C. M., Brommonschenkel S. H., Zerbini F. M. 2009; Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant Microbe Interact 22:352–361 [View Article][PubMed]
    [Google Scholar]
  6. Anandalakshmi R., Marathe R., Ge X., Herr J. M. Jr, Mau C., Mallory A., Pruss G., Bowman L., Vance V. B. 2000; A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290:142–144 [View Article][PubMed]
    [Google Scholar]
  7. Anindya R., Savithri H. S. 2004; Potyviral NIa proteinase, a proteinase with novel deoxyribonuclease activity. J Biol Chem 279:32159–32169 [View Article][PubMed]
    [Google Scholar]
  8. Anindya R., Chittori S., Savithri H. S. 2005; Tyrosine 66 of Pepper vein banding virus genome-linked protein is uridylylated by RNA-dependent RNA polymerase. Virology 336:154–162 [View Article][PubMed]
    [Google Scholar]
  9. Aranda M. A., Escaler M., Wang D., Maule A. J. 1996; Induction of HSP70 and polyubiquitin expression associated with plant virus replication. Proc Natl Acad Sci U S A 93:15289–15293 [View Article][PubMed]
    [Google Scholar]
  10. Babu M., Griffiths J. S., Huang T. S., Wang A. 2008; Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics 9:325 [View Article][PubMed]
    [Google Scholar]
  11. Baebler S., Krecic-Stres H., Rotter A., Kogovsek P., Cankar K., Kok E. J., Gruden K., Kovac M., Zel J. other authors 2009; PVYNTN elicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Mol Plant Pathol 10:263–275 [View Article][PubMed]
    [Google Scholar]
  12. Basso J., Dallaire P., Charest P. J., Devantier Y., Laliberté J. F. 1994; Evidence for an internal ribosome entry site within the 5′ non-translated region of turnip mosaic potyvirus RNA. J Gen Virol 75:3157–3165 [View Article][PubMed]
    [Google Scholar]
  13. Baunoch D. A., Das P., Hari V. 1988; Intracellular localization of TEV capsid and inclusion proteins by immunogold labeling. J Ultrastruct Mol Struct Res 99:203–212 [View Article]
    [Google Scholar]
  14. Baunoch D. A., Das P., Browning M. E., Hari V. 1991; A temporal study of the expression of the capsid, cytoplasmic inclusion and nuclear inclusion proteins of tobacco etch potyvirus in infected plants. J Gen Virol 72:487–492 [View Article][PubMed]
    [Google Scholar]
  15. Beauchemin C., Laliberté J. F. 2007; The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 81:10905–10913 [View Article][PubMed]
    [Google Scholar]
  16. Beauchemin C., Boutet N., Laliberté J. F. 2007; Visualization of the interaction between the precursors of VPg, the viral protein linked to the genome of turnip mosaic virus, and the translation eukaryotic initiation factor iso 4E in planta . J Virol 81:775–782 [View Article][PubMed]
    [Google Scholar]
  17. Bilgin D. D., Liu Y., Schiff M., Dinesh-Kumar S. P. 2003; P58IPK, a plant ortholog of double-stranded RNA-dependent protein kinase PKR inhibitor, functions in viral pathogenesis. Dev Cell 4:651–661 [View Article][PubMed]
    [Google Scholar]
  18. Botha A. M., Swanevelder Z. H., Lapitan N. L. V. 2010; Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia . Environ Entomol 39:1206–1231 [View Article][PubMed]
    [Google Scholar]
  19. Brault V., Miller W. A. 1992; Translational frameshifting mediated by a viral sequence in plant cells. Proc Natl Acad Sci U S A 89:2262–2266 [View Article][PubMed]
    [Google Scholar]
  20. Byrne M. E. 2009; A role for the ribosome in development. Trends Plant Sci 14:512–519 [View Article][PubMed]
    [Google Scholar]
  21. Carrington J. C., Freed D. D., Leinicke A. J. 1991; Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell 3:953–962[PubMed]
    [Google Scholar]
  22. Carrington J. C., Jensen P. E., Schaad M. C. 1998; Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J 14:393–400 [View Article][PubMed]
    [Google Scholar]
  23. Christie M., Brosnan C. A., Rothnagel J. A., Carroll B. J. 2011; RNA decay and RNA silencing in plants: competition or collaboration?. Front Plant Sci 2:99 [View Article][PubMed]
    [Google Scholar]
  24. Chung B. Y., Miller W. A., Atkins J. F., Firth A. E. 2008; An overlapping essential gene in the Potyviridae . Proc Natl Acad Sci U S A 105:5897–5902 [View Article][PubMed]
    [Google Scholar]
  25. Clemente-Moreno M. J., Díaz-Vivancos P., Rubio M., Fernández-García N., Hernández J. A. 2013; Chloroplast protection in plum pox virus-infected peach plants by l-2-oxo-4-thiazolidine-carboxylic acid treatments: effect in the proteome. Plant Cell Environ 36:640–654 [View Article][PubMed]
    [Google Scholar]
  26. Cotton S., Grangeon R., Thivierge K., Mathieu I., Ide C., Wei T., Wang A., Laliberté J. F. 2009; Turnip mosaic virus RNA replication complex vesicles are mobile, align with microfilaments, and are each derived from a single viral genome. J Virol 83:10460–10471 [View Article][PubMed]
    [Google Scholar]
  27. Crum C. J., Hu J., Hiddinga H. J., Roth D. A. 1988; Tobacco mosaic virus infection stimulates the phosphorylation of a plant protein associated with double-stranded RNA-dependent protein kinase activity. J Biol Chem 263:13440–13443[PubMed]
    [Google Scholar]
  28. Cui X., Wei T., Chowda-Reddy R. V., Sun G., Wang A. 2010; The Tobacco etch virus P3 protein forms mobile inclusions via the early secretory pathway and traffics along actin microfilaments. Virology 397:56–63 [View Article][PubMed]
    [Google Scholar]
  29. Dardick C. 2007; Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Mol Plant Microbe Interact 20:1004–1017 [View Article][PubMed]
    [Google Scholar]
  30. Daròs J. A., Schaad M. C., Carrington J. C. 1999; Functional analysis of the interaction between VPg-proteinase (NIa) and RNA polymerase (NIb) of tobacco etch potyvirus, using conditional and suppressor mutants. J Virol 73:8732–8740[PubMed]
    [Google Scholar]
  31. den Boon J. A., Ahlquist P. 2010; Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 64:241–256 [View Article][PubMed]
    [Google Scholar]
  32. Di Carli M., Benvenuto E., Donini M. 2012; Recent insights into plant–virus interactions through proteomic analysis. J Proteome Res 11:4765–4780 [View Article][PubMed]
    [Google Scholar]
  33. Díaz-Vivancos P., Clemente-Moreno M. J., Rubio M., Olmos E., García J. A., Martínez-Gómez P., Hernández J. A. 2008; Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. J Exp Bot 59:2147–2160 [View Article][PubMed]
    [Google Scholar]
  34. Dielen A. S., Sassaki F. T., Walter J., Michon T., Ménard G., Pagny G., Krause-Sakate R., Maia I. G., Badaoui S. other authors 2011; The 20S proteasome α5 subunit of Arabidopsis thaliana carries an RNase activity and interacts in planta with the lettuce mosaic potyvirus HcPro protein. Mol Plant Pathol 12:137–150 [View Article][PubMed]
    [Google Scholar]
  35. Dolja V. V., Haldeman R., Robertson N. L., Dougherty W. G., Carrington J. C. 1994; Distinct functions of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J 13:1482–1491[PubMed]
    [Google Scholar]
  36. Dougherty W. G., Hiebert E. 1980; Translation of potyvirus RNA in a rabbit reticulocyte lysate: identification of nuclear inclusion proteins as products of tobacco etch virus RNA translation and cylindrical inclusion protein as a product of the potyvirus genome. Virology 104:174–182 [View Article][PubMed]
    [Google Scholar]
  37. Dufresne P. J., Thivierge K., Cotton S., Beauchemin C., Ide C., Ubalijoro E., Laliberté J. F., Fortin M. G. 2008; Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology 374:217–227 [View Article][PubMed]
    [Google Scholar]
  38. Dunoyer P., Thomas C., Harrison S., Revers F., Maule A. 2004; A cysteine-rich plant protein potentiates Potyvirus movement through an interaction with the virus genome-linked protein VPg. J Virol 78:2301–2309 [View Article][PubMed]
    [Google Scholar]
  39. Eiamtanasate S., Juricek M., Yap Y. K. 2007; C-terminal hydrophobic region leads PRSV P3 protein to endoplasmic reticulum. Virus Genes 35:611–617 [View Article][PubMed]
    [Google Scholar]
  40. Elena S. F., Rodrigo G. 2012; Towards an integrated molecular model of plant-virus interactions. Curr Opin Virol 2:719–724 [View Article][PubMed]
    [Google Scholar]
  41. Endres M. W., Gregory B. D., Gao Z., Foreman A. W., Mlotshwa S., Ge X., Pruss G. J., Ecker J. R., Bowman L. H., Vance V. 2010; Two plant viral suppressors of silencing require the ethylene-inducible host transcription factor RAV2 to block RNA silencing. PLoS Pathog 6:e1000729 [View Article][PubMed]
    [Google Scholar]
  42. Eskelin K., Hafrén A., Rantalainen K. I., Mäkinen K. 2011; Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta . J Virol 85:9210–9221 [View Article][PubMed]
    [Google Scholar]
  43. Everett R. D., Boutell C., Hale B. G. 2013; Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol 11:400–411 [View Article][PubMed]
    [Google Scholar]
  44. Fellers J., Wan J., Hong Y., Collins G. B., Hunt A. G. 1998; In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. J Gen Virol 79:2043–2049[PubMed]
    [Google Scholar]
  45. Fernández A., Guo H. S., Sáenz P., Simón-Buela L., Gómez de Cedrón M., García J. A. 1997; The motif V of plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucleic Acids Res 25:4474–4480 [View Article][PubMed]
    [Google Scholar]
  46. Gabrenaite-Verkhovskaya R., Andreev I. A., Kalinina N. O., Torrance L., Taliansky M. E., Mäkinen K. 2008; Cylindrical inclusion protein of potato virus A is associated with a subpopulation of particles isolated from infected plants. J Gen Virol 89:829–838 [View Article][PubMed]
    [Google Scholar]
  47. Gallie D. R. 2001; Cap-independent translation conferred by the 5′ leader of tobacco etch virus is eukaryotic initiation factor 4G dependent. J Virol 75:12141–12152 [View Article][PubMed]
    [Google Scholar]
  48. García J. A., Glasa M., Cambra M., Candresse T. 2014; Plum pox virus and sharka: a model potyvirus and a major disease. Mol Plant Pathol 15:226–241 [View Article][PubMed]
    [Google Scholar]
  49. Garcia-Ruiz H., Takeda A., Chapman E. J., Sullivan C. M., Fahlgren N., Brempelis K. J., Carrington J. C. 2010; Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22:481–496 [View Article][PubMed]
    [Google Scholar]
  50. Gibbs A. J., Ohshima K., Phillips M. J., Gibbs M. J. 2008; The prehistory of potyviruses: their initial radiation was during the dawn of agriculture. PLoS ONE 3:e2523 [View Article][PubMed]
    [Google Scholar]
  51. Grangeon R., Agbeci M., Chen J., Grondin G., Zheng H., Laliberté J. F. 2012; Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 86:9255–9265 [View Article][PubMed]
    [Google Scholar]
  52. Grangeon R., Jiang J., Wan J., Agbeci M., Zheng H., Laliberté J. F. 2013; 6K2-induced vesicles can move cell to cell during turnip mosaic virus infection. Front Microbiol 4:351 [View Article][PubMed]
    [Google Scholar]
  53. Grzela R., Strokovska L., Andrieu J. P., Dublet B., Zagorski W., Chroboczek J. 2006; Potyvirus terminal protein VPg, effector of host eukaryotic initiation factor eIF4E. Biochimie 88:887–896 [View Article][PubMed]
    [Google Scholar]
  54. Grzela R., Szolajska E., Ebel C., Madern D., Favier A., Wojtal I., Zagorski W., Chroboczek J. 2008; Virulence factor of potato virus Y, genome-attached terminal protein VPg, is a highly disordered protein. J Biol Chem 283:213–221 [View Article][PubMed]
    [Google Scholar]
  55. Guo D., Rajamäki M. L., Saarma M., Valkonen J. P. 2001; Towards a protein interaction map of potyviruses: protein interaction matrixes of two potyviruses based on the yeast two-hybrid system. J Gen Virol 82:935–939[PubMed]
    [Google Scholar]
  56. Hafrén A., Mäkinen K. 2008; Purification of viral genome-linked protein VPg from potato virus A-infected plants reveals several post-translationally modified forms of the protein. J Gen Virol 89:1509–1518 [View Article][PubMed]
    [Google Scholar]
  57. Hafrén A., Hofius D., Rönnholm G., Sonnewald U., Mäkinen K. 2010; HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant Cell 22:523–535 [View Article][PubMed]
    [Google Scholar]
  58. Hafrén A., Eskelin K., Mäkinen K. 2013; Ribosomal protein P0 promotes Potato virus A infection and functions in viral translation together with VPg and eIF(iso)4E. J Virol 87:4302–4312 [View Article][PubMed]
    [Google Scholar]
  59. Haldeman-Cahill R., Daròs J. A., Carrington J. C. 1998; Secondary structures in the capsid protein coding sequence and 3′ nontranslated region involved in amplification of the tobacco etch virus genome. J Virol 72:4072–4079[PubMed]
    [Google Scholar]
  60. Hébrard E., Bessin Y., Michon T., Longhi S., Uversky V. N., Delalande F., Van Dorsselaer A., Romero P., Walter J. other authors 2009; Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses. Virol J 6:23 [View Article][PubMed]
    [Google Scholar]
  61. Holcik M., Sonenberg N. 2005; Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318–327 [View Article][PubMed]
    [Google Scholar]
  62. Hong Y., Hunt A. G. 1996; RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226:146–151 [View Article][PubMed]
    [Google Scholar]
  63. Hong Y., Levay K., Murphy J. F., Klein P. G., Shaw J. G., Hunt A. G. 1995; A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214:159–166 [View Article][PubMed]
    [Google Scholar]
  64. Howell S. H. 2013; Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499 [View Article][PubMed]
    [Google Scholar]
  65. Huang B., Bates M., Zhuang X. 2009; Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016 [View Article][PubMed]
    [Google Scholar]
  66. Huang T. S., Wei T., Laliberté J. F., Wang A. 2010; A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiol 152:255–266 [View Article][PubMed]
    [Google Scholar]
  67. Hummel M., Cordewener J. H. G., de Groot J. C. M., Smeekens S., America A. H. P., Hanson J. 2012; Dynamic protein composition of Arabidopsis thaliana cytosolic ribosomes in response to sucrose feeding as revealed by label free MSE proteomics. Proteomics 12:1024–1038 [View Article][PubMed]
    [Google Scholar]
  68. Ivanov K. I., Mäkinen K. 2012; Coat proteins, host factors and plant viral replication. Curr Opin Virol 2:712–718 [View Article][PubMed]
    [Google Scholar]
  69. Ivanov K. I., Puustinen P., Merits A., Saarma M., Mäkinen K. 2001; Phosphorylation down-regulates the RNA binding function of the coat protein of potato virus A. J Biol Chem 276:13530–13540[PubMed]
    [Google Scholar]
  70. Ivanov K. I., Bašić M., Varjosalo M., Mäkinen K. 2014; One-step purification of twin-Strep-tagged proteins and their complexes on Strep-Tactin resin cross-linked with bis(sulfosuccinimidyl) suberate (BS3). J Vis Exp 86:e51536 doi: 10.3791/51536
    [Google Scholar]
  71. Janda M., Ahlquist P. 1993; RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae . Cell 72:961–970 [View Article][PubMed]
    [Google Scholar]
  72. Jouannet V., Moreno A. B., Elmayan T., Vaucheret H., Crespi M. D., Maizel A. 2012; Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO J 31:1704–1713 [View Article][PubMed]
    [Google Scholar]
  73. Kader M. A., Lindberg S. 2010; Cytosolic calcium and pH signaling in plants under salinity stress. Plant Signal Behav 5:233–238 [View Article][PubMed]
    [Google Scholar]
  74. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12:7269–7282 [View Article][PubMed]
    [Google Scholar]
  75. Kasschau K. D., Carrington J. C. 2001; Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285:71–81 [View Article][PubMed]
    [Google Scholar]
  76. Khan M. A., Miyoshi H., Gallie D. R., Goss D. J. 2008; Potyvirus genome-linked protein, VPg, directly affects wheat germ in vitro translation: interactions with translation initiation factors eIF4F and eIFiso4F. J Biol Chem 283:1340–1349 [View Article][PubMed]
    [Google Scholar]
  77. Knuhtsen H., Hiebert E., Purcifull D. E. 1974; Partial purification and some properties of tobacco etch virus induced intranuclear inclusions. Virology 61:200–209 [View Article][PubMed]
    [Google Scholar]
  78. Kudla J., Xu Q., Harter K., Gruissem W., Luan S. 1999; Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc Natl Acad Sci U S A 96:4718–4723 [View Article][PubMed]
    [Google Scholar]
  79. Laín S., Riechmann J. L., García J. A. 1990; RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res 18:7003–7006 [View Article][PubMed]
    [Google Scholar]
  80. Laín S., Martín M. T., Riechmann J. L., García J. A. 1991; Novel catalytic activity associated with positive-strand RNA virus infection: nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicaselike protein. J Virol 65:1–6[PubMed] [CrossRef]
    [Google Scholar]
  81. Langenberg W. G., Zhang L. 1997; Immunocytology shows the presence of tobacco etch virus P3 protein in nuclear inclusions. J Struct Biol 118:243–247 [View Article][PubMed]
    [Google Scholar]
  82. Langland J. O., Jin S., Jacobs B. L., Roth D. A. 1995; Identification of a plant-encoded analog of PKR, the mammalian double-stranded RNA-dependent protein kinase. Plant Physiol 108:1259–1267 [View Article][PubMed]
    [Google Scholar]
  83. Lee W. Y., Lee D., Chung W. I., Kwon C. S. 2009; Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J 58:511–524 [View Article][PubMed]
    [Google Scholar]
  84. Léonard S., Plante D., Wittmann S., Daigneault N., Fortin M. G., Laliberté J. F. 2000; Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737 [View Article][PubMed]
    [Google Scholar]
  85. Léonard S., Viel C., Beauchemin C., Daigneault N., Fortin M. G., Laliberté J. F. 2004; Interaction of VPg-Pro of turnip mosaic virus with the translation initiation factor 4E and the poly(A)-binding protein in planta . J Gen Virol 85:1055–1063 [View Article][PubMed]
    [Google Scholar]
  86. Levis C., Astier-Manifacier S. 1993; The 5′ untranslated region of PVY RNA, even located in an internal position, enables initiation of translation. Virus Genes 7:367–379 [View Article][PubMed]
    [Google Scholar]
  87. Li X. H., Carrington J. C. 1993; Nuclear transport of tobacco etch potyviral RNA-dependent RNA polymerase is highly sensitive to sequence alterations. Virology 193:951–958 [View Article][PubMed]
    [Google Scholar]
  88. Li X. H., Valdez P., Olvera R. E., Carrington J. C. 1997; Functions of the tobacco etch virus RNA polymerase (NIb): subcellular transport and protein–protein interaction with VPg/proteinase (NIa). J Virol 71:1598–1607[PubMed]
    [Google Scholar]
  89. Li H., Ilin S., Wang W., Duncan E. M., Wysocka J., Allis C. D., Patel D. J. 2006; Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442:91–95[PubMed] [CrossRef]
    [Google Scholar]
  90. Lukhovitskaya N. I., Solovieva A. D., Boddeti S. K., Thaduri S., Solovyev A. G., Savenkov E. I. 2013; An RNA virus-encoded zinc-finger protein acts as a plant transcription factor and induces a regulator of cell size and proliferation in two tobacco species. Plant Cell 25:960–973 [View Article][PubMed]
    [Google Scholar]
  91. Mäkinen K., Hafrén A. 2014; Intracellular coordination of potyviral RNA functions in infection. Front Plant Sci 5:110 [View Article][PubMed]
    [Google Scholar]
  92. Mäkinen K., Naess V., Tamm T., Truve E., Aaspõllu A., Saarma M. 1995; The putative replicase of the cocksfoot mottle sobemovirus is translated as a part of the polyprotein by –1 ribosomal frameshift. Virology 207:566–571 [View Article][PubMed]
    [Google Scholar]
  93. Mathur C., Savithri H. S. 2012; Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus. Biochem Biophys Res Commun 427:113–118 [View Article][PubMed]
    [Google Scholar]
  94. Mathur C., Jimsheena V. K., Banerjee S., Mäkinen K., Gowda L. R., Savithri H. S. 2012; Functional regulation of PVBV Nuclear Inclusion protein-a protease activity upon interaction with Viral Protein genome-linked and phosphorylation. Virology 422:254–264 [View Article][PubMed]
    [Google Scholar]
  95. Merits A., Guo D., Saarma M. 1998; VPg, coat protein and five non-structural proteins of potato A potyvirus bind RNA in a sequence-unspecific manner. J Gen Virol 79:3123–3127[PubMed]
    [Google Scholar]
  96. Merits A., Guo D., Järvekülg L., Saarma M. 1999; Biochemical and genetic evidence for interactions between potato A potyvirus-encoded proteins P1 and P3 and proteins of the putative replication complex. Virology 263:15–22 [View Article][PubMed]
    [Google Scholar]
  97. Merits A., Rajamäki M. L., Lindholm P., Runeberg-Roos P., Kekarainen T., Puustinen P., Mäkeläinen K., Valkonen J. P., Saarma M. 2002; Proteolytic processing of potyviral proteins and polyprotein processing intermediates in insect and plant cells. J Gen Virol 83:1211–1221[PubMed]
    [Google Scholar]
  98. Mlotshwa S., Verver J., Sithole-Niang I., Gopinath K., Carette J., van Kammen A., Wellink J. 2002; Subcellular location of the helper component-proteinase of Cowpea aphid-borne mosaic virus. Virus Genes 25:207–216 [View Article][PubMed]
    [Google Scholar]
  99. Moeller J. R., Moscou M. J., Bancroft T., Skadsen R. W., Wise R. P., Whitham S. A. 2012; Differential accumulation of host mRNAs on polyribosomes during obligate pathogen–plant interactions. Mol Biosyst 8:2153–2165 [View Article][PubMed]
    [Google Scholar]
  100. Murphy J. F., Klein P. G., Hunt A. G., Shaw J. G. 1996; Replacement of the tyrosine residue that links a potyviral VPg to the viral RNA is lethal. Virology 220:535–538 [View Article][PubMed]
    [Google Scholar]
  101. Murray K. E., Barton D. J. 2003; Poliovirus CRE-dependent VPg uridylylation is required for positive-strand RNA synthesis but not for negative-strand RNA synthesis. J Virol 77:4739–4750 [View Article][PubMed]
    [Google Scholar]
  102. Niepel M., Gallie D. R. 1999; Identification and characterization of the functional elements within the tobacco etch virus 5′ leader required for cap-independent translation. J Virol 73:9080–9088[PubMed]
    [Google Scholar]
  103. Oruetxebarria I., Guo D., Merits A., Mäkinen K., Saarma M., Valkonen J. P. T. 2001; Identification of the genome-linked protein in virions of Potato virus A, with comparison to other members in genus Potyvirus . Virus Res 73:103–112 [View Article][PubMed]
    [Google Scholar]
  104. Patarroyo C., Laliberté J. F., Zheng H. 2012; Hijack it, change it: how do plant viruses utilize the host secretory pathway for efficient viral replication and spread?. Front Plant Sci 3:308[PubMed]
    [Google Scholar]
  105. Paul A. V., van Boom J. H., Filippov D., Wimmer E. 1998; Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393:280–284 [View Article][PubMed]
    [Google Scholar]
  106. Peña P. V., Davrazou F., Shi X., Walter K. L., Verkhusha V. V., Gozani O., Zhao R., Kutateladze T. G. 2006; Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature 442:100–103[PubMed]
    [Google Scholar]
  107. Pogany J., Stork J., Li Z., Nagy P. D. 2008; In vitro assembly of the Tomato bushy stunt virus replicase requires the host Heat shock protein 70. Proc Natl Acad Sci U S A 105:19956–19961 [View Article][PubMed]
    [Google Scholar]
  108. Prasch C. M., Sonnewald U. 2013; Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866 [View Article][PubMed]
    [Google Scholar]
  109. Puustinen P., Mäkinen K. 2004; Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J Biol Chem 279:38103–38110 [View Article][PubMed]
    [Google Scholar]
  110. Puustinen P., Rajamäki M. L., Ivanov K. I., Valkonen J. P. T., Mäkinen K. 2002; Detection of the potyviral genome-linked protein VPg in virions and its phosphorylation by host kinases. J Virol 76:12703–12711 [View Article][PubMed]
    [Google Scholar]
  111. Raghupathy M. B., Griffiths J. S., Stobbs L. W., Brown D. C., Brandle J. E., Wang A. 2006; Transfection of Arabidopsis protoplasts with a Plum pox virus (PPV) infectious clone for studying early molecular events associated with PPV infection. J Virol Methods 136:147–153 [View Article][PubMed]
    [Google Scholar]
  112. Rajamäki M. L., Valkonen J. P. 2009; Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell 21:2485–2502 [View Article][PubMed]
    [Google Scholar]
  113. Rajamäki M., Mäki-Valkama T., Mäkinen K., Valkonen J. P. T. 2004; Infection with potyviruses. In Plant–Pathogen Interactions pp. 68–91 Edited by Talbot N. Oxford: Blackwell;
    [Google Scholar]
  114. Rantalainen K. I., Uversky V. N., Permi P., Kalkkinen N., Dunker A. K., Mäkinen K. 2008; Potato virus A genome-linked protein VPg is an intrinsically disordered molten globule-like protein with a hydrophobic core. Virology 377:280–288 [View Article][PubMed]
    [Google Scholar]
  115. Rantalainen K. I., Christensen P. A., Hafrén A., Otzen D. E., Kalkkinen N., Mäkinen K. 2009; Interaction of a potyviral VPg with anionic phospholipid vesicles. Virology 395:114–120 [View Article][PubMed]
    [Google Scholar]
  116. Rantalainen K. I., Eskelin K., Tompa P., Mäkinen K. 2011; Structural flexibility allows the functional diversity of potyvirus genome-linked protein VPg. J Virol 85:2449–2457 [View Article][PubMed]
    [Google Scholar]
  117. Ray S., Yumak H., Domashevskiy A., Khan M. A., Gallie D. R., Goss D. J. 2006; Tobacco etch virus mRNA preferentially binds wheat germ eukaryotic initiation factor (eIF) 4G rather than eIFiso4G. J Biol Chem 281:35826–35834 [View Article][PubMed]
    [Google Scholar]
  118. Restrepo M. A., Freed D. D., Carrington J. C. 1990; Nuclear transport of plant potyviral proteins. Plant Cell 2:987–998 [View Article][PubMed]
    [Google Scholar]
  119. Riedel D., Lesemann D. E., Maiss E. 1998; Ultrastructural localization of nonstructural and coat proteins of 19 potyviruses using antisera to bacterially expressed proteins of plum pox potyvirus. Arch Virol 143:2133–2158 [View Article][PubMed]
    [Google Scholar]
  120. Robaglia C., Caranta C. 2006; Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 11:40–45 [View Article][PubMed]
    [Google Scholar]
  121. Roberts I. M., Wang D., Findlay K., Maule A. J. 1998; Ultrastructural and temporal observations of the potyvirus cylindrical inclusions (Cls) show that the Cl protein acts transiently in aiding virus movement. Virology 245:173–181 [View Article][PubMed]
    [Google Scholar]
  122. Rochon D. 2007; Molecular insights into plant virus–vector interactions. In Biotechnology and Plant Disease Management pp. 532–567 Edited by Punja Z. K., de Boer S. H., Sanfaçon H. Wallingford: CAB International; [View Article]
    [Google Scholar]
  123. Rodríguez-Cerezo E., Findlay K., Shaw J. G., Lomonossoff G. P., Qiu S. G., Linstead P., Shanks M., Risco C. 1997; The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236:296–306 [View Article][PubMed]
    [Google Scholar]
  124. Roossinck M. J. 2012; Plant virus metagenomics: biodiversity and ecology. Annu Rev Genet 46:359–369 [View Article][PubMed]
    [Google Scholar]
  125. Roudet-Tavert G., Michon T., Walter J., Delaunay T., Redondo E., Le Gall O. 2007; Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J Gen Virol 88:1029–1033 [View Article][PubMed]
    [Google Scholar]
  126. Sahana N., Kaur H., Basavaraj, Tena F., Jain R. K., Palukaitis P., Canto T., Praveen S. 2012; Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro. PLoS ONE 7:e52546 [View Article][PubMed]
    [Google Scholar]
  127. Saiga S., Furumizu C., Yokoyama R., Kurata T., Sato S., Kato T., Tabata S., Suzuki M., Komeda Y. 2008; The Arabidopsis OBERON1 and OBERON2 genes encode plant homeodomain finger proteins and are required for apical meristem maintenance. Development 135:1751–1759 [View Article][PubMed]
    [Google Scholar]
  128. Saiga S., Möller B., Watanabe-Taneda A., Abe M., Weijers D., Komeda Y. 2012; Control of embryonic meristem initiation in Arabidopsis by PHD-finger protein complexes. Development 139:1391–1398 [View Article][PubMed]
    [Google Scholar]
  129. Salazar L. F. 2003; Potato viruses after the XXth century: effects, dissemination and their control. http://www.crawfordfund.org/wp-content/uploads/2014/03/Salazar-Potato-Viruses.pdf.
  130. Schaad M. C., Haldeman-Cahill R., Cronin S., Carrington J. C. 1996; Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification. J Virol 70:7039–7048[PubMed]
    [Google Scholar]
  131. Schaad M. C., Jensen P. E., Carrington J. C. 1997; Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059 [View Article][PubMed]
    [Google Scholar]
  132. Schippers J. H. M., Mueller-Roeber B. 2010; Ribosomal composition and control of leaf development. Plant Sci 179:307–315 [View Article]
    [Google Scholar]
  133. Scholthof K. B., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T. other authors 2011; Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954 [View Article][PubMed]
    [Google Scholar]
  134. Shen W. T., Wang M. Q., Yan P., Gao L., Zhou P. 2010a; Protein interaction matrix of Papaya ringspot virus type P based on a yeast two-hybrid system. Acta Virol 54:49–54 [View Article][PubMed]
    [Google Scholar]
  135. Shen W., Yan P., Gao L., Pan X., Wu J., Zhou P. 2010b; Helper component-proteinase (HC-Pro) protein of Papaya ringspot virus interacts with papaya calreticulin. Mol Plant Pathol 11:335–346 [View Article][PubMed]
    [Google Scholar]
  136. Shi X., Hong T., Walter K. L., Ewalt M., Michishita E., Hung T., Carney D., Peña P., Lan F. other authors 2006; ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99[PubMed] [CrossRef]
    [Google Scholar]
  137. Sochor J., Babula P., Adam V., Krska B., Kizek R. 2012; Sharka: the past, the present and the future. Viruses 4:2853–2901 [View Article][PubMed]
    [Google Scholar]
  138. Sorel M., Garcia J. A., German-Retana S. 2014; The Potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. Mol Plant Microbe Interact 27:215–226 [View Article][PubMed]
    [Google Scholar]
  139. Spriggs K. A., Stoneley M., Bushell M., Willis A. E. 2008; Re-programming of translation following cell stress allows IRES-mediated translation to predominate. Biol Cell 100:27–38 [View Article][PubMed]
    [Google Scholar]
  140. Suntio T., Mäkinen K. 2012; Abiotic stress responses promote Potato virus A infection in Nicotiana benthamiana . Mol Plant Pathol 13:775–784 [View Article][PubMed]
    [Google Scholar]
  141. Sztuba-Solińska J., Stollar V., Bujarski J. J. 2011; Subgenomic messenger RNAs: mastering regulation of (+)-strand RNA virus life cycle. Virology 412:245–255 [View Article][PubMed]
    [Google Scholar]
  142. Taverna S. D., Li H., Ruthenburg A. J., Allis C. D., Patel D. J. 2007; How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040 [View Article][PubMed]
    [Google Scholar]
  143. Tavert-Roudet G., Abdul-Razzak A., Doublet B., Walter J., Delaunay T., German-Retana S., Michon T., Le Gall O., Candresse T. 2012; The C terminus of lettuce mosaic potyvirus cylindrical inclusion helicase interacts with the viral VPg and with lettuce translation eukaryotic initiation factor 4E. J Gen Virol 93:184–193 [View Article][PubMed]
    [Google Scholar]
  144. Thivierge K., Cotton S., Dufresne P. J., Mathieu I., Beauchemin C., Ide C., Fortin M. G., Laliberté J. F. 2008; Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. Virology 377:216–225 [View Article][PubMed]
    [Google Scholar]
  145. Thomas C. L., Schmidt D., Bayer E. M., Dreos R., Maule A. J. 2009; Arabidopsis plant homeodomain finger proteins operate downstream of auxin accumulation in specifying the vasculature and primary root meristem. Plant J 59:426–436 [View Article][PubMed]
    [Google Scholar]
  146. Thran M., Link K., Sonnewald U. 2012; The Arabidopsis DCP2 gene is required for proper mRNA turnover and prevents transgene silencing in Arabidopsis . Plant J 72:368–377 [View Article][PubMed]
    [Google Scholar]
  147. Tilsner J., Oparka K. J. 2010; Tracking the green invaders: advances in imaging virus infection in plants. Biochem J 430:21–37 [View Article][PubMed]
    [Google Scholar]
  148. Torrance L., Andreev I. A., Gabrenaite-Verhovskaya R., Cowan G., Mäkinen K., Taliansky M. E. 2006; An unusual structure at one end of potato potyvirus particles. J Mol Biol 357:1–8 [View Article][PubMed]
    [Google Scholar]
  149. Urcuqui-Inchima S., Haenni A. L., Bernardi F. 2001; Potyvirus proteins: a wealth of functions. Virus Res 74:157–175 [View Article][PubMed]
    [Google Scholar]
  150. Verchot J. 2012; Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front Plant Sci 3:275 [View Article][PubMed]
    [Google Scholar]
  151. Vuorinen A., Gammelgard E., Auvinen P., Somervuo P., Dere S., Valkonen J. P. 2010; Factors underpinning the responsiveness and higher levels of virus resistance realised in potato genotypes carrying virus-specific R genes. Ann Appl Biol 157:229–241 [View Article]
    [Google Scholar]
  152. Wang A., Krishnaswamy S. 2012; Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement. Mol Plant Pathol 13:795–803 [View Article][PubMed]
    [Google Scholar]
  153. Wang D., Maule A. J. 1995; Inhibition of host gene expression associated with plant virus replication. Science 267:229–231 [View Article][PubMed]
    [Google Scholar]
  154. Wang X., Ullah Z., Grumet R. 2000; Interaction between zucchini yellow mosaic potyvirus RNA-dependent RNA polymerase and host poly-(A) binding protein. Virology 275:433–443 [View Article][PubMed]
    [Google Scholar]
  155. Wei T., Wang A. 2008; Biogenesis of cytoplasmic membranous vesicles for plant potyvirus replication occurs at endoplasmic reticulum exit sites in a COPI- and COPII-dependent manner. J Virol 82:12252–12264 [View Article][PubMed]
    [Google Scholar]
  156. Wei T., Huang T. S., McNeil J., Laliberté J. F., Hong J., Nelson R. S., Wang A. 2010a; Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J Virol 84:799–809 [View Article][PubMed]
    [Google Scholar]
  157. Wei T., Zhang C., Hong J., Xiong R., Kasschau K. D., Zhou X., Carrington J. C., Wang A. 2010b; Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog 6:e1000962 [View Article][PubMed]
    [Google Scholar]
  158. Wei T., Zhang C., Hou X., Sanfaçon H., Wang A. 2013; The SNARE protein Syp71 is essential for turnip mosaic virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathog 9:e1003378 [View Article][PubMed]
    [Google Scholar]
  159. Whitham S. A., Quan S., Chang H. S., Cooper B., Estes B., Zhu T., Wang X., Hou Y. M. 2003; Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. Plant J 33:271–283 [View Article][PubMed]
    [Google Scholar]
  160. Whittle C. A., Krochko J. E. 2009; Transcript profiling provides evidence of functional divergence and expression networks among ribosomal protein gene paralogs in Brassica napus . Plant Cell 21:2203–2219 [View Article][PubMed]
    [Google Scholar]
  161. Wittmann S., Chatel H., Fortin M. G., Laliberté J. F. 1997; Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234:84–92 [View Article][PubMed]
    [Google Scholar]
  162. Wysocka J., Swigut T., Xiao H., Milne T. A., Kwon S. Y., Landry J., Kauer M., Tackett A. J., Chait B. T. other authors 2006; A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442:86–90[PubMed]
    [Google Scholar]
  163. Xiong R., Wang A. 2013; SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus, is required for viral infection. J Virol 87:4704–4715 [View Article][PubMed]
    [Google Scholar]
  164. Yang C., Guo R., Jie F., Nettleton D., Peng J., Carr T., Yeakley J. M., Fan J. B., Whitham S. A. 2007; Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Mol Plant Microbe Interact 20:358–370 [View Article][PubMed]
    [Google Scholar]
  165. Yang C., Zhang C., Dittman J. D., Whitham S. A. 2009; Differential requirement of ribosomal protein S6 by plant RNA viruses with different translation initiation strategies. Virology 390:163–173 [View Article][PubMed]
    [Google Scholar]
  166. Yang H., Huang Y., Zhi H., Yu D. 2011; Proteomics-based analysis of novel genes involved in response toward soybean mosaic virus infection. Mol Biol Rep 38:511–521 [View Article][PubMed]
    [Google Scholar]
  167. Ye C., Dickman M. B., Whitham S. A., Payton M., Verchot J. 2011; The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol 156:741–755 [View Article][PubMed]
    [Google Scholar]
  168. Zeenko V., Gallie D. R. 2005; Cap-independent translation of tobacco etch virus is conferred by an RNA pseudoknot in the 5′-leader. J Biol Chem 280:26813–26824 [View Article][PubMed]
    [Google Scholar]
  169. Zilian E., Maiss E. 2011; Detection of plum pox potyviral protein–protein interactions in planta using an optimized mRFP-based bimolecular fluorescence complementation system. J Gen Virol 92:2711–2723 [View Article][PubMed]
    [Google Scholar]
/content/journal/jgv/10.1099/vir.0.064220-0
Loading
/content/journal/jgv/10.1099/vir.0.064220-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error