1887

Abstract

(WNV; genus , family ) is an emerging pathogenic arbovirus responsible for outbreaks of encephalitis around the world. Whilst no vaccines are currently available to prevent WNV infection of humans, the use of cDNA copies of flavivirus RNA genomes with large internal deletions within the capsid (C) appears promising. C-deleted vaccines are able to replicate and secrete large amounts of non-infectious immunogenic subviral particles (SVPs) from transfected cells. We have previously generated a WNV DNA vaccine candidate pKUNdC/C where C-deleted WNV cDNA was placed under the control of one copy of the cytomegalovirus (CMV) promoter and the C gene was placed under the control of a second copy of the CMV promoter in the same plasmid DNA. This DNA was shown to generate single-round infectious particles (SRIPs) capable of delivering self-replicating C-deleted RNA producing SVPs to surrounding cells, thus enhancing the vaccine potential. However, the amounts of both SRIPs and SVPs produced from pKUNdC/C DNA were relatively low. In this investigation, we aimed at increasing SRIP production by optimizing -C expression via incorporating different forms of C and the use of a more powerful promoter. The construct containing an elongation factor EF1α promoter encoding an extended form of C was demonstrated to produce the highest titres of SRIPs and was immunogenic in mice. Additionally, SRIP and SVP titres were further improved via incorporation of a glycosylation motif in the envelope protein. The optimized DNA yielded ~100-fold greater titres of SRIPs than the original construct, thus providing a promising candidate for further vaccine evaluation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064121-0
2014-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2176.html?itemId=/content/journal/jgv/10.1099/vir.0.064121-0&mimeType=html&fmt=ahah

References

  1. Adams S. C., Broom A. K., Sammels L. M., Hartnett A. C., Howard M. J., Coelen R. J., Mackenzie J. S., Hall R. A. 1995; Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206:49–56 [View Article][PubMed]
    [Google Scholar]
  2. Allison S. L., Schalich J., Stiasny K., Mandl C. W., Heinz F. X. 2001; Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol 75:4268–4275 [View Article][PubMed]
    [Google Scholar]
  3. Baskar J. F., Smith P. P., Nilaver G., Jupp R. A., Hoffmann S., Peffer N. J., Tenney D. J., Colberg-Poley A. M., Ghazal P., Nelson J. A. 1996; The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J Virol 70:3207–3214[PubMed]
    [Google Scholar]
  4. Blanch A., Robinson F., Watson I. R., Cheng L. S., Irwin M. S. 2013; Eukaryotic translation elongation factor 1-alpha 1 inhibits p53 and p73 dependent apoptosis and chemotherapy sensitivity. PLoS ONE 8:e66436 [View Article][PubMed]
    [Google Scholar]
  5. Boshart M., Weber F., Jahn G., Dorsch-Häsler K., Fleckenstein B., Schaffner W. 1985; A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521–530 [View Article][PubMed]
    [Google Scholar]
  6. Bourne N., Scholle F., Silva M. C., Rossi S. L., Dewsbury N., Judy B., De Aguiar J. B., Leon M. A., Estes D. M. other authors 2007; Early production of type I interferon during West Nile virus infection: role for lymphoid tissues in IRF3-independent interferon production. J Virol 81:9100–9108 [View Article][PubMed]
    [Google Scholar]
  7. Brasaemle D. L., Wolins N. E. 2012; Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 287:2273–2279 [View Article][PubMed]
    [Google Scholar]
  8. Brien J. D., Uhrlaub J. L., Nikolich-Zugich J. 2007; Protective capacity and epitope specificity of CD8+ T cells responding to lethal West Nile virus infection. Eur J Immunol 37:1855–1863 [View Article][PubMed]
    [Google Scholar]
  9. Brooks A. R., Harkins R. N., Wang P. Y., Qian H. S., Liu P. X., Rubanyi G. M. 2004; Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med 6:395–404 [View Article][PubMed]
    [Google Scholar]
  10. Chang T. H., Liao C. L., Lin Y. L. 2006; Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect 8:157–171 [View Article][PubMed]
    [Google Scholar]
  11. Chang D. C., Liu W. J., Anraku I., Clark D. C., Pollitt C. C., Suhrbier A., Hall R. A., Khromykh A. A. 2008; Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. Nat Biotechnol 26:571–577 [View Article][PubMed]
    [Google Scholar]
  12. Chung S. M., Andersson T., Sonntag K. C., Björklund L., Isacson O., Kim K. S. 2002; Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells 20:139–145 [View Article][PubMed]
    [Google Scholar]
  13. Condeelis J. 1995; Elongation factor 1 alpha, translation and the cytoskeleton. Trends Biochem Sci 20:169–170 [View Article][PubMed]
    [Google Scholar]
  14. da Conceição T. M., Rust N. M., Berbel A. C. E. R., Martins N. B., do Nascimento Santos C. A., Da Poian A. T., de Arruda L. B. 2013; Essential role of RIG-I in the activation of endothelial cells by dengue virus. Virology 435:281–292 [View Article][PubMed]
    [Google Scholar]
  15. Daffis S., Samuel M. A., Suthar M. S., Gale M. Jr, Diamond M. S. 2008; Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol 82:10349–10358 [View Article][PubMed]
    [Google Scholar]
  16. Davis C. W., Nguyen H. Y., Hanna S. L., Sánchez M. D., Doms R. W., Pierson T. C. 2006; West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 80:1290–1301 [View Article][PubMed]
    [Google Scholar]
  17. Dayan G. H., Bevilacqua J., Coleman D., Buldo A., Risi G. 2012; Phase II, dose ranging study of the safety and immunogenicity of single dose West Nile vaccine in healthy adults ≥50 years of age. Vaccine 30:6656–6664 [View Article][PubMed]
    [Google Scholar]
  18. Desmyter J., Melnick J. L., Rawls W. E. 1968; Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J Virol 2:955–961[PubMed]
    [Google Scholar]
  19. Diamond M. S., Shrestha B., Marri A., Mahan D., Engle M. 2003a; B cells and antibody play critical roles in the immediate defense of disseminated infection by West Nile encephalitis virus. J Virol 77:2578–2586 [View Article][PubMed]
    [Google Scholar]
  20. Diamond M. S., Shrestha B., Mehlhop E., Sitati E., Engle M. 2003b; Innate and adaptive immune responses determine protection against disseminated infection by West Nile encephalitis virus. Viral Immunol 16:259–278 [View Article][PubMed]
    [Google Scholar]
  21. Dorsch-Häsler K., Keil G. M., Weber F., Jasin M., Schaffner W., Koszinowski U. H. 1985; A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus. Proc Natl Acad Sci U S A 82:8325–8329 [View Article][PubMed]
    [Google Scholar]
  22. Dowd K. A., Pierson T. C. 2011; Antibody-mediated neutralization of flaviviruses: a reductionist view. Virology 411:306–315 [View Article][PubMed]
    [Google Scholar]
  23. Emeny J. M., Morgan M. J. 1979; Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J Gen Virol 43:247–252 [View Article][PubMed]
    [Google Scholar]
  24. Fabre E. E., Bigey P., Orsini C., Scherman D. 2006; Comparison of promoter region constructs for in vivo intramuscular expression. J Gene Med 8:636–645 [View Article][PubMed]
    [Google Scholar]
  25. Fredericksen B. L., Keller B. C., Fornek J., Katze M. G., Gale M. Jr 2008; Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82:609–616 [View Article][PubMed]
    [Google Scholar]
  26. Gentry M. K., Henchal E. A., McCown J. M., Brandt W. E., Dalrymple J. M. 1982; Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg 31:548–555[PubMed]
    [Google Scholar]
  27. Gill D. R., Smyth S. E., Goddard C. A., Pringle I. A., Higgins C. F., Colledge W. H., Hyde S. C. 2001; Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1alpha promoter. Gene Ther 8:1539–1546 [View Article][PubMed]
    [Google Scholar]
  28. Goldman L. A., Cutrone E. C., Kotenko S. V., Krause C. D., Langer J. A. 1996; Modifications of vectors pEF-BOS, pcDNA1 and pcDNA3 result in improved convenience and expression. Biotechniques 21:1013–1015[PubMed]
    [Google Scholar]
  29. González-González E., Ra H., Spitler R., Hickerson R. P., Contag C. H., Kaspar R. L. 2010; Increased interstitial pressure improves nucleic acid delivery to skin enabling a comparative analysis of constitutive promoters. Gene Ther 17:1270–1278 [View Article][PubMed]
    [Google Scholar]
  30. Gopalkrishnan R. V., Christiansen K. A., Goldstein N. I., DePinho R. A., Fisher P. B. 1999; Use of the human EF-1alpha promoter for expression can significantly increase success in establishing stable cell lines with consistent expression: a study using the tetracycline-inducible system in human cancer cells. Nucleic Acids Res 27:4775–4782 [View Article][PubMed]
    [Google Scholar]
  31. Gyure K. A. 2009; West Nile virus infections. J Neuropathol Exp Neurol 68:1053–1060 [View Article][PubMed]
    [Google Scholar]
  32. Hall R. A., Nisbet D. J., Pham K. B., Pyke A. T., Smith G. A., Khromykh A. A. 2003; DNA vaccine coding for the full-length infectious Kunjin virus RNA protects mice against the New York strain of West Nile virus. Proc Natl Acad Sci U S A 100:10460–10464 [View Article][PubMed]
    [Google Scholar]
  33. Hanna S. L., Pierson T. C., Sanchez M. D., Ahmed A. A., Murtadha M. M., Doms R. W. 2005; N-linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol 79:13262–13274 [View Article][PubMed]
    [Google Scholar]
  34. Hong S., Hwang D. Y., Yoon S., Isacson O., Ramezani A., Hawley R. G., Kim K. S. 2007; Functional analysis of various promoters in lentiviral vectors at different stages of in vitro differentiation of mouse embryonic stem cells. Mol Ther 15:1630–1639 [View Article][PubMed]
    [Google Scholar]
  35. Hunt T. A., Urbanowski M. D., Kakani K., Law L. M. J., Brinton M. A., Hobman T. C. 2007; Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I2 PP2A . Cell Microbiol 9:2756–2766 [View Article][PubMed]
    [Google Scholar]
  36. Ishikawa T., Widman D. G., Bourne N., Konishi E., Mason P. W. 2008; Construction and evaluation of a chimeric pseudoinfectious virus vaccine to prevent Japanese encephalitis. Vaccine 26:2772–2781 [View Article][PubMed]
    [Google Scholar]
  37. Isomura H., Stinski M. F. 2003; The human cytomegalovirus major immediate-early enhancer determines the efficiency of immediate-early gene transcription and viral replication in permissive cells at low multiplicity of infection. J Virol 77:3602–3614 [View Article][PubMed]
    [Google Scholar]
  38. Kim D. W., Uetsuki T., Kaziro Y., Yamaguchi N., Sugano S. 1990; Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene 91:217–223 [View Article][PubMed]
    [Google Scholar]
  39. Kim D. W., Suzuki R., Harada T., Saito I., Miyamura T. 1994; Trans-suppression of gene expression by hepatitis C viral core protein. Jpn J Med Sci Biol 47:211–220 [View Article][PubMed]
    [Google Scholar]
  40. Kofler R. M., Aberle J. H., Aberle S. W., Allison S. L., Heinz F. X., Mandl C. W. 2004; Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc Natl Acad Sci U S A 101:1951–1956 [View Article][PubMed]
    [Google Scholar]
  41. Konishi E., Mason P. W. 1993; Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. J Virol 67:1672–1675[PubMed]
    [Google Scholar]
  42. Lanciotti R. S., Roehrig J. T., Deubel V., Smith J., Parker M., Steele K., Crise B., Volpe K. E., Crabtree M. B. other authors 1999; Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286:2333–2337 [View Article][PubMed]
    [Google Scholar]
  43. Larena M., Regner M., Lee E., Lobigs M. 2011; Pivotal role of antibody and subsidiary contribution of CD8+ T cells to recovery from infection in a murine model of Japanese encephalitis. J Virol 85:5446–5455 [View Article][PubMed]
    [Google Scholar]
  44. Ledgerwood J. E., Pierson T. C., Hubka S. A., Desai N., Rucker S., Gordon I. J., Enama M. E., Nelson S., Nason M. other authors 2011; A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis 203:1396–1404 [View Article][PubMed]
    [Google Scholar]
  45. Lee E., Lobigs M. 2000; Substitutions at the putative receptor-binding site of an encephalitic flavivirus alter virulence and host cell tropism and reveal a role for glycosaminoglycans in entry. J Virol 74:8867–8875 [View Article][PubMed]
    [Google Scholar]
  46. Lee E., Stocks C. E., Amberg S. M., Rice C. M., Lobigs M. 2000; Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage in vitro is lethal for virus production. J Virol 74:24–32 [View Article][PubMed]
    [Google Scholar]
  47. Lim J. K., Murphy P. M. 2011; Chemokine control of West Nile virus infection. Exp Cell Res 317:569–574 [View Article][PubMed]
    [Google Scholar]
  48. Limjindaporn T., Netsawang J., Noisakran S., Thiemmeca S., Wongwiwat W., Sudsaward S., Avirutnan P., Puttikhunt C., Kasinrerk W. other authors 2007; Sensitization to Fas-mediated apoptosis by dengue virus capsid protein. Biochem Biophys Res Commun 362:334–339 [View Article][PubMed]
    [Google Scholar]
  49. Lindenbach B. D., Thiel H.-J., Rice C. M. 2007; Flaviviridae: the viruses and their replication. In Fields Virology, 5th edn. pp. 1101–1151 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  50. Lobigs M., Lee E. 2004; Inefficient signalase cleavage promotes efficient nucleocapsid incorporation into budding flavivirus membranes. J Virol 78:178–186 [View Article][PubMed]
    [Google Scholar]
  51. Lobigs M., Lee E., Ng M. L., Pavy M., Lobigs P. 2010; A flavivirus signal peptide balances the catalytic activity of two proteases and thereby facilitates virus morphogenesis. Virology 401:80–89 [View Article][PubMed]
    [Google Scholar]
  52. Londrigan S. L., Brady J. L., Sutherland R. M., Hawthorne W. J., Thomas H. E., Jhala G., Cowan P. J., Kay T. W. H., O’Connell P. J., Lew A. M. 2007; Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets. Xenotransplantation 14:119–125 [View Article][PubMed]
    [Google Scholar]
  53. Ma D. L., Jiang D., Qing M., Weidner J. M., Qu X. W., Guo H. T., Chang J. H., Gu B. H., Shi P. Y. other authors 2009; Antiviral effect of interferon lambda against West Nile virus. Antiviral Res 83:53–60 [View Article][PubMed]
    [Google Scholar]
  54. Mandl C. W. 2004; Flavivirus immunization with capsid-deletion mutants: basics, benefits, and barriers. Viral Immunol 17:461–472 [View Article][PubMed]
    [Google Scholar]
  55. Markoff L., Falgout B., Chang A. 1997; A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology 233:105–117 [View Article][PubMed]
    [Google Scholar]
  56. Mason P. W., Shustov A. V., Frolov I. 2006; Production and characterization of vaccines based on flaviviruses defective in replication. Virology 351:432–443 [View Article][PubMed]
    [Google Scholar]
  57. Mehta A. K., Majumdar S. S., Alam P., Gulati N., Brahmachari V. 2009; Epigenetic regulation of cytomegalovirus major immediate-early promoter activity in transgenic mice. Gene 428:20–24 [View Article][PubMed]
    [Google Scholar]
  58. Miller J. L., de Wet B. J. M., Martinez-Pomares L., Radcliffe C. M., Dwek R. A., Rudd P. M., Gordon S. 2008; The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4:e17 [View Article][PubMed]
    [Google Scholar]
  59. Mostashari F., Bunning M. L., Kitsutani P. T., Singer D. A., Nash D., Cooper M. J., Katz N., Liljebjelke K. A., Biggerstaff B. J. other authors 2001; Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358:261–264 [View Article][PubMed]
    [Google Scholar]
  60. Nash D., Mostashari F., Fine A., Miller J., O’Leary D., Murray K., Huang A., Rosenberg A., Greenberg A. other authors 2001; The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344:1807–1814 [View Article][PubMed]
    [Google Scholar]
  61. Nasirudeen A. M., Wong H. H., Thien P., Xu S., Lam K. P., Liu D. X. 2011; RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5:e926 [View Article][PubMed]
    [Google Scholar]
  62. Otsuka M., Kato N., Lan K., Yoshida H., Kato J., Goto T., Shiratori Y., Omata M. 2000; Hepatitis C virus core protein enhances p53 function through augmentation of DNA binding affinity and transcriptional ability. J Biol Chem 275:34122–34130 [View Article][PubMed]
    [Google Scholar]
  63. Pang X., Guo Y., Zhou Y., Fu W., Gu X. 2014; Highly efficient production of a dengue pseudoinfectious virus. Vaccine 32:3854–3860 [View Article][PubMed]
    [Google Scholar]
  64. Prösch S., Stein J., Staak K., Liebenthal C., Volk H. D., Krüger D. H. 1996; Inactivation of the very strong HCMV immediate early promoter by DNA CpG methylation in vitro . Biol Chem Hoppe Seyler 377:195–201 [View Article][PubMed]
    [Google Scholar]
  65. Qin J. Y., Zhang L., Clift K. L., Hulur I., Xiang A. P., Ren B. Z., Lahn B. T. 2010; Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5:e10611 [View Article][PubMed]
    [Google Scholar]
  66. Ramos H. J., Lanteri M. C., Blahnik G., Negash A., Suthar M. S., Brassil M. M., Sodhi K., Treuting P. M., Busch M. P. other authors 2012; IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog 8:e1003039 [View Article][PubMed]
    [Google Scholar]
  67. Roby J. A., Hall R. A., Khromykh A. A. 2011; Nucleic acid-based infectious and pseudo-infectious flavivirus vaccines. In Replicating Vaccines: A New Generation pp. 299–320 Edited by Dormitzer P. R., Mandl C. W., Rapuoli R. Basel: Birkhauser; [View Article]
    [Google Scholar]
  68. Roby J. A., Funk A., Khromykh A. A. 2012; Flavivirus replication and assembly. In Molecular Virology and Control of Flaviviruses pp. 21–49 Edited by Shi P. Y. Wymondham: Caister Academic Press;
    [Google Scholar]
  69. Roby J. A., Hall R. A., Khromykh A. A. 2013; West Nile virus genome with glycosylated envelope protein and deletion of alpha helices 1, 2, and 4 in the capsid protein is noninfectious and efficiently secretes subviral particles. J Virol 87:13063–13069 [View Article][PubMed]
    [Google Scholar]
  70. Rumyantsev A. A., Goncalvez A. P., Giel-Moloney M., Catalan J., Liu Y., Gao Q. S., Almond J., Kleanthous H., Pugachev K. V. 2013; Single-dose vaccine against tick-borne encephalitis. Proc Natl Acad Sci U S A 110:13103–13108 [View Article][PubMed]
    [Google Scholar]
  71. Samsa M. M., Mondotte J. A., Iglesias N. G., Assunção-Miranda I., Barbosa-Lima G., Da Poian A. T., Bozza P. T., Gamarnik A. V. 2009; Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog 5:e1000632 [View Article][PubMed]
    [Google Scholar]
  72. Seregin A., Nistler R., Borisevich V., Yamshchikov G., Chaporgina E., Kwok C. W., Yamshchikov V. 2006; Immunogenicity of West Nile virus infectious DNA and its noninfectious derivatives. Virology 356:115–125 [View Article][PubMed]
    [Google Scholar]
  73. Shrestha B., Diamond M. S. 2004; Role of CD8+ T cells in control of West Nile virus infection. J Virol 78:8312–8321 [View Article][PubMed]
    [Google Scholar]
  74. Sinici I., Zarghooni M., Tropak M. B., Mahuran D. J., Ozkara H. A. 2006; Comparison of HCMV IE and EF-1 promoters for the stable expression of beta-subunit of hexosaminidase in CHO cell lines. Biochem Genet 44:168–175 [View Article][PubMed]
    [Google Scholar]
  75. Sitati E. M., Diamond M. S. 2006; CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 80:12060–12069 [View Article][PubMed]
    [Google Scholar]
  76. Suthar M. S., Diamond M. S., Gale M. Jr 2013; West Nile virus infection and immunity. Nat Rev Microbiol 11:115–128 [View Article][PubMed]
    [Google Scholar]
  77. Suzuki R., Winkelmann E. R., Mason P. W. 2009; Construction and characterization of a single-cycle chimeric flavivirus vaccine candidate that protects mice against lethal challenge with dengue virus type 2. J Virol 83:1870–1880 [View Article][PubMed]
    [Google Scholar]
  78. Teschendorf C., Warrington K. H. Jr, Siemann D. W., Muzyczka N. 2002; Comparison of the EF-1 alpha and the CMV promoter for engineering stable tumor cell lines using recombinant adeno-associated virus. Anticancer Res 22:6A3325–3330[PubMed]
    [Google Scholar]
  79. Tokushige K., Moradpour D., Wakita T., Geissler M., Hayashi N., Wands J. R. 1997; Comparison between cytomegalovirus promoter and elongation factor-1 alpha promoter-driven constructs in the establishment of cell lines expressing hepatitis C virus core protein. J Virol Methods 64:73–80 [View Article][PubMed]
    [Google Scholar]
  80. Tsai Y. T., Chang S. Y., Lee C. N., Kao C. L. 2009; Human TLR3 recognizes dengue virus and modulates viral replication in vitro . Cell Microbiol 11:604–615 [View Article][PubMed]
    [Google Scholar]
  81. Vanniasinkam T., Ertl H., Tang Q. Y. 2006; Trichostatin-A enhances adaptive immune responses to DNA vaccination. J Clin Virol 36:292–297 [View Article][PubMed]
    [Google Scholar]
  82. Wakabayashi-Ito N., Nagata S. 1994; Characterization of the regulatory elements in the promoter of the human elongation factor-1 alpha gene. J Biol Chem 269:29831–29837[PubMed]
    [Google Scholar]
  83. Widman D. G., Ishikawa T., Fayzulin R., Bourne N., Mason P. W. 2008; Construction and characterization of a second-generation pseudoinfectious West Nile virus vaccine propagated using a new cultivation system. Vaccine 26:2762–2771 [View Article][PubMed]
    [Google Scholar]
  84. Yang J. S., Ramanathan M. P., Muthumani K., Choo A. Y., Jin S. H., Yu Q. C., Hwang D. S., Choo D. K., Lee M. D. other authors 2002; Induction of inflammation by West Nile virus capsid through the caspase-9 apoptotic pathway. Emerg Infect Dis 8:1379–1384 [View Article][PubMed]
    [Google Scholar]
  85. Yang M. R., Lee S. R., Oh W., Lee E. W., Yeh J. Y., Nah J. J., Joo Y. S., Shin J., Lee H. W. other authors 2008; West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cell Microbiol 10:165–176[PubMed] [CrossRef]
    [Google Scholar]
  86. Zheng C. Y., Baum B. J. 2005; Evaluation of viral and mammalian promoters for use in gene delivery to salivary glands. Mol Ther 12:528–536 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.064121-0
Loading
/content/journal/jgv/10.1099/vir.0.064121-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error