1887

Abstract

White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn () industry. The main causative agent of WTD is nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20–29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.064014-0
2014-09-01
2020-05-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/9/1919.html?itemId=/content/journal/jgv/10.1099/vir.0.064014-0&mimeType=html&fmt=ahah

References

  1. Arcier J. M., Herman F., Lightner D. V., Redman R. M., Mari J., Bonami J. R. 1999; A viral disease associated with mortalities in hatchery-reared postlarvae of the giant freshwater prawn Macrobrachium rosenbergii. Dis Aquat Organ 38:177–181 [CrossRef]
    [Google Scholar]
  2. Baer M. L., Houser F., Loesch-Fries L. S., Gehrke L. 1994; Specific RNA binding by amino-terminal peptides of alfalfa mosaic virus coat protein. EMBO J 13:727–735[PubMed]
    [Google Scholar]
  3. Bonami J. R., Shi Z., Qian D., Sri Widada J. 2005; White tail disease of the giant freshwater prawn, Macrobrachium rosenbergii: separation of the associated virions and characterization of MrNV as a new type of nodavirus. J Fish Dis 28:23–31 [CrossRef][PubMed]
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  5. Calnan B. J., Biancalana S., Hudson D., Frankel A. D. 1991; Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210 [CrossRef][PubMed]
    [Google Scholar]
  6. Dong X. F., Natarajan P., Tihova M., Johnson J. E., Schneemann A. 1998; Particle polymorphism caused by deletion of a peptide molecular switch in a quasiequivalent icosahedral virus. J Virol 72:6024–6033[PubMed]
    [Google Scholar]
  7. Goh Z. H., Tan S. G., Bhassu S., Tan W. S. 2011; Virus-like particle of Macrobrachium rosenbergii nodavirus produced in bacteria. J Virol Methods 175:74–79 [CrossRef][PubMed]
    [Google Scholar]
  8. Hameed A. S. S., Yoganandhan K., Widada J. S., Bonami J. R. 2004; Studies on the occurrence of Macrobrachium rosenbergii nodavirus and extra small virus-like particle associated with white tail disease of M. rosenbergii in India by RT-PCR detection. Aquaculture 238:127–133 [CrossRef]
    [Google Scholar]
  9. Harding S. E., Johnson P. 1985; Physicochemical studies on turnip-yellow-mosaic virus. Homogeneity, relative molecular masses, hydrodynamic radii and concentration-dependence of parameters in non-dissociating solvents. Biochem J 231:549–555[PubMed]
    [Google Scholar]
  10. Heckman K. L., Pease L. R. 2007; Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2:924–932 [CrossRef][PubMed]
    [Google Scholar]
  11. Johnson C. S. Jr, Gabriel D. A. 1995 Laser Light Scattering New York: Dover Publications;
    [Google Scholar]
  12. Joo K. I., Fang Y., Liu Y., Xiao L., Gu Z., Tai A., Lee C. L., Tang Y., Wang P. 2011; Enhanced real-time monitoring of adeno-associated virus trafficking by virus-quantum dot conjugates. ACS Nano 5:3523–3535 [CrossRef][PubMed]
    [Google Scholar]
  13. Lee K. W., Tan W. S. 2008; Recombinant hepatitis B virus core particles: association, dissociation and encapsidation of green fluorescent protein. J Virol Methods 151:172–180 [CrossRef][PubMed]
    [Google Scholar]
  14. Marshall D., Schneemann A. 2001; Specific packaging of nodaviral RNA2 requires the N-terminus of the capsid protein. Virology 285:165–175 [CrossRef][PubMed]
    [Google Scholar]
  15. Nassal M. 1992; The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encapsidation and productive viral positive-strand DNA synthesis but not for virus assembly. J Virol 66:4107–4116[PubMed]
    [Google Scholar]
  16. NaveenKumar S., Shekar M., Karunasagar I., Karunasagar I. 2013; Genetic analysis of RNA1 and RNA2 of Macrobrachium rosenbergii nodavirus (MrNV) isolated from India. Virus Res 173:377–385 [CrossRef][PubMed]
    [Google Scholar]
  17. Ong S. T., Yusoff K., Kho C. L., Abdullah J. O., Tan W. S. 2009; Mutagenesis of the nucleocapsid protein of Nipah virus involved in capsid assembly. J Gen Virol 90:392–397 [CrossRef][PubMed]
    [Google Scholar]
  18. Owens L., La Fauce K., Juntunen K., Hayakijkosol O., Zeng C. 2009; Macrobrachium rosenbergii nodavirus disease (white tail disease) in Australia. Dis Aquat Organ 85:175–180 [CrossRef][PubMed]
    [Google Scholar]
  19. Pillai D., Bonami J. R., Sri Widada J. 2006; Rapid detection of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV), the pathogenic agents of white tail disease of Macrobrachium rosenbergii (De Man), by loop-mediated isothermal amplification. J Fish Dis 29:275–283 [CrossRef][PubMed]
    [Google Scholar]
  20. Qian D., Shi Z., Zhang S., Cao Z., Liu W., Li L., Xie Y., Cambournac I., Bonami J. R. 2003; Extra small virus-like particles (XSV) and nodavirus associated with whitish muscle disease in the giant freshwater prawn, Macrobrachium rosenbergii.. J Fish Dis 26:521–527 [CrossRef][PubMed]
    [Google Scholar]
  21. Rao A. L. N., Grantham G. L. 1996; Molecular studies on bromovirus capsid protein. II. Functional analysis of the amino-terminal arginine-rich motif and its role in encapsidation, movement, and pathology. Virology 226:294–305 [CrossRef][PubMed]
    [Google Scholar]
  22. Ravi M., Basha A. N., Sarathi M., Idalia H. H. R., Sri Widada J., Bonami J. R., Hameed A. S. S. 2009; Studies on the occurrence of white tail disease (WTD) caused by MrNV and XSV in hatchery-reared post-larvae of Penaeus indicus and P. monodon. Aquaculture 292:117–120 [CrossRef]
    [Google Scholar]
  23. Saedi T. A., Moeini H., Tan W. S., Yusoff K., Daud H. M., Chu K. B., Tan S. G., Bhassu S. 2012; Detection and phylogenetic profiling of nodavirus associated with white tail disease in Malaysian Macrobrachium rosenbergii de Man. Mol Biol Rep 39:5785–5790 [CrossRef][PubMed]
    [Google Scholar]
  24. Sambrook J., Russell D. W., Irwin N., Janssen K. A. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Sikkema F. D., Comellas-Aragonès M., Fokkink R. G., Verduin B. J., Cornelissen J. J., Nolte R. J. 2007; Monodisperse polymer-virus hybrid nanoparticles. Org Biomol Chem 5:54–57 [CrossRef][PubMed]
    [Google Scholar]
  26. Szewczyk E., Nayak T., Oakley C. E., Edgerton H., Xiong Y., Taheri-Talesh N., Osmani S. A., Oakley B. R. 2006; Fusion PCR and gene targeting in Aspergillus nidulans.. Nat Protoc 1:3111–3120 [CrossRef][PubMed]
    [Google Scholar]
  27. Tan W. S., Dyson M. R., Murray K. 2003; Hepatitis B virus core antigen: enhancement of its production in Escherichia coli, and interaction of the core particles with the viral surface antigen. Biol Chem 384:363–371 [CrossRef][PubMed]
    [Google Scholar]
  28. Wang C. S., Chang J. S., Wen C. M., Shih H. H., Chen S. N. 2008; Macrobrachium rosenbergii nodavirus infection in M. rosenbergii (de Man) with white tail disease cultured in Taiwan. J Fish Dis 31:415–422 [CrossRef][PubMed]
    [Google Scholar]
  29. Yoganandhan K., Leartvibhas M., Sriwongpuk S., Limsuwan C. 2006; White tail disease of the giant freshwater prawn Macrobrachium rosenbergii in Thailand. Dis Aquat Organ 69:255–258 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon K. Y., Tan W. S., Tey B. T., Lee K. W., Ho K. L. 2013; Native agarose gel electrophoresis and electroelution: a fast and cost-effective method to separate the small and large hepatitis B capsids. Electrophoresis 34:244–253 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.064014-0
Loading
/content/journal/jgv/10.1099/vir.0.064014-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error