1887

Abstract

All influenza viruses bud and egress from lipid rafts within the apical plasma membrane of infected epithelial cells. As a result, all components of progeny virions must be transported to these lipid rafts for assembly and budding. Although the mechanism of transport for other influenza proteins has been elucidated, influenza B virus (IBV) glycoprotein NB subcellular localization and transport are not understood completely. To address the aforementioned properties of NB, a series of trafficking experiments were conducted. Here, we showed that NB co-localized with markers specific for the endoplasmic reticulum (ER) and Golgi region. The data from chemical treatment of NB-expressing cells by Brefeldin A, a fungal antibiotic and a known chemical inhibitor of the protein secretory pathway, further confirmed that NB is transported through the ER–Golgi pathway as it restricted NB localization to the perinuclear region. Using NB deletion mutants, the hydrophobic transmembrane domain was identified as being required for NB transport to the plasma membrane. Furthermore, palmitoylation was also required for transport of NB to the plasma membrane. Systematic mutation of cysteines to serines in NB demonstrated that cysteine 49, likely in a palmitoylated form, is also required for transport to the plasma membrane. Surprisingly, further analysis demonstrated that replication of NBC49S mutant virus was delayed relative to the parental IBV. The results demonstrated that NB is the third influenza virus protein to have been shown to be palmitoylated and together these findings may aid in future studies aimed at elucidating the function of NB.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.063511-0
2014-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/6/1211.html?itemId=/content/journal/jgv/10.1099/vir.0.063511-0&mimeType=html&fmt=ahah

References

  1. Barman S., Ali A., Hui E. K., Adhikary L., Nayak D. P. 2001; Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res 77:61–69 [View Article][PubMed]
    [Google Scholar]
  2. Bijlmakers M. J., Marsh M. 2003; The on-off story of protein palmitoylation. Trends Cell Biol 13:32–42 [View Article][PubMed]
    [Google Scholar]
  3. Blanpain C., Wittamer V., Vanderwinden J. M., Boom A., Renneboog B., Lee B., Le Poul E., El Asmar L., Govaerts C.other authors 2001; Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways. J Biol Chem 276:23795–23804 [View Article][PubMed]
    [Google Scholar]
  4. Brassard D. L., Leser G. P., Lamb R. A. 1996; Influenza B virus NB glycoprotein is a component of the virion. Virology 220:350–360 [View Article][PubMed]
    [Google Scholar]
  5. Cherukuri A., Carter R. H., Brooks S., Bornmann W., Finn R., Dowd C. S., Pierce S. K. 2004; B cell signaling is regulated by induced palmitoylation of CD81. J Biol Chem 279:31973–31982 [View Article][PubMed]
    [Google Scholar]
  6. Dauber B., Heins G., Wolff T. 2004; The influenza B virus nonstructural NS1 protein is essential for efficient viral growth and antagonizes beta interferon induction. J Virol 78:1865–1872 [View Article][PubMed]
    [Google Scholar]
  7. Fujiwara T., Oda K., Yokota S., Takatsuki A., Ikehara Y. 1988; Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 263:18545–18552[PubMed]
    [Google Scholar]
  8. Grantham M. L., Wu W. H., Lalime E. N., Lorenzo M. E., Klein S. L., Pekosz A. 2009; Palmitoylation of the influenza A virus M2 protein is not required for virus replication in vitro but contributes to virus virulence. J Virol 83:8655–8661 [View Article][PubMed]
    [Google Scholar]
  9. Guerriero C. J., Lai Y., Weisz O. A. 2008; Differential sorting and Golgi export requirements for raft-associated and raft-independent apical proteins along the biosynthetic pathway. J Biol Chem 283:18040–18047 [View Article][PubMed]
    [Google Scholar]
  10. Hatta M., Kawaoka Y. 2003; The NB protein of influenza B virus is not necessary for virus replication in vitro . J Virol 77:6050–6054 [View Article][PubMed]
    [Google Scholar]
  11. He X. S., Mahmood K., Maecker H. T., Holmes T. H., Kemble G. W., Arvin A. M., Greenberg H. B. 2003; Analysis of the frequencies and of the memory T cell phenotypes of human CD8+ T cells specific for influenza A viruses. J Infect Dis 187:1075–1084 [View Article][PubMed]
    [Google Scholar]
  12. Holsinger L. J., Shaughnessy M. A., Micko A., Pinto L. H., Lamb R. A. 1995; Analysis of the posttranslational modifications of the influenza virus M2 protein. J Virol 69:1219–1225[PubMed]
    [Google Scholar]
  13. Koegl M., Zlatkine P., Ley S. C., Courtneidge S. A., Magee A. I. 1994; Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J 303:749–753[PubMed]
    [Google Scholar]
  14. Kraft K., Olbrich H., Majoul I., Mack M., Proudfoot A., Oppermann M. 2001; Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J Biol Chem 276:34408–34418 [View Article][PubMed]
    [Google Scholar]
  15. Kundu A., Avalos R. T., Sanderson C. M., Nayak D. P. 1996; Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol 70:6508–6515[PubMed]
    [Google Scholar]
  16. Lin S., Naim H. Y., Rodriguez A. C., Roth M. G. 1998; Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J Cell Biol 142:51–57 [View Article][PubMed]
    [Google Scholar]
  17. Matsuda T., Cepko C. L. 2004; Electroporation and RNA interference in the rodent retina in vivo and in vitro . Proc Natl Acad Sci U S A 101:16–22 [View Article][PubMed]
    [Google Scholar]
  18. McCullers J. A., Hoffmann E., Huber V. C., Nickerson A. D. 2005; A single amino acid change in the C-terminal domain of the matrix protein M1 of influenza B virus confers mouse adaptation and virulence. Virology 336:318–326 [View Article][PubMed]
    [Google Scholar]
  19. Melkonian K. A., Ostermeyer A. G., Chen J. Z., Roth M. G., Brown D. A. 1999; Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. Many raft proteins are acylated, while few are prenylated. J Biol Chem 274:3910–3917 [View Article][PubMed]
    [Google Scholar]
  20. Naeve C. W., Williams D. 1990; Fatty acids on the A/Japan/305/57 influenza virus hemagglutinin have a role in membrane fusion. EMBO J 9:3857–3866[PubMed]
    [Google Scholar]
  21. Osborne A. R., Rapoport T. A., van den Berg B. 2005; Protein translocation by the Sec61/SecY channel. Annu Rev Cell Dev Biol 21:529–550 [View Article][PubMed]
    [Google Scholar]
  22. Palese P., Shaw M. L. 2007 In Fields Virology, 5th edn. pp. 1647–1689 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Williams & Wilkins;
    [Google Scholar]
  23. Rodriguez Boulan E., Pendergast M. 1980; Polarized distribution of viral envelope proteins in the plasma membrane of infected epithelial cells. Cell 20:45–54 [View Article][PubMed]
    [Google Scholar]
  24. Rodriguez Boulan E., Sabatini D. D. 1978; Asymmetric budding of viruses in epithelial monlayers: a model system for study of epithelial polarity. Proc Natl Acad Sci U S A 75:5071–5075 [View Article][PubMed]
    [Google Scholar]
  25. Roth M. G., Srinivas R. V., Compans R. W. 1983; Basolateral maturation of retroviruses in polarized epithelial cells. J Virol 45:1065–1073[PubMed]
    [Google Scholar]
  26. Scheiffele P., Rietveld A., Wilk T., Simons K. 1999; Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274:2038–2044 [View Article][PubMed]
    [Google Scholar]
  27. Shaw M. W., Choppin P. W., Lamb R. A. 1983; A previously unrecognized influenza B virus glycoprotein from a bicistronic mRNA that also encodes the viral neuraminidase. Proc Natl Acad Sci U S A 80:4879–4883 [View Article][PubMed]
    [Google Scholar]
  28. Simons K., Toomre D. 2000; Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39 [View Article][PubMed]
    [Google Scholar]
  29. Simpson D. A., Lamb R. A. 1992; Alterations to influenza virus hemagglutinin cytoplasmic tail modulate virus infectivity. J Virol 66:790–803[PubMed]
    [Google Scholar]
  30. Steinhauer D. A., Wharton S. A., Wiley D. C., Skehel J. J. 1991; Deacylation of the hemagglutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties. Virology 184:445–448 [View Article][PubMed]
    [Google Scholar]
  31. Takeda M., Leser G. P., Russell C. J., Lamb R. A. 2003; Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci U S A 100:14610–14617 [View Article][PubMed]
    [Google Scholar]
  32. Terry L. J., Shows E. B., Wente S. R. 2007; Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416 [View Article][PubMed]
    [Google Scholar]
  33. Veit M., Kretzschmar E., Kuroda K., Garten W., Schmidt M. F. G., Klenk H.-D., Rott R. 1991; Site-specific mutagenesis identifies three cysteine residues in the cytoplasmic tail as acylation sites of influenza virus hemagglutinin. J Virol 65:2491–2500[PubMed]
    [Google Scholar]
  34. Watanabe S., Imai M., Ohara Y., Odagiri T. 2003; Influenza B virus BM2 protein is transported through the trans-Golgi network as an integral membrane protein. J Virol 77:10630–10637 [View Article][PubMed]
    [Google Scholar]
  35. Webb Y., Hermida-Matsumoto L., Resh M. D. 2000; Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem 275:261–270 [View Article][PubMed]
    [Google Scholar]
  36. Williams M. A., Lamb R. A. 1986; Determination of the orientation of an integral membrane protein and sites of glycosylation by oligonucleotide-directed mutagenesis: influenza B virus NB glycoprotein lacks a cleavable signal sequence and has an extracellular NH2-terminal region. Mol Cell Biol 6:4317–4328[PubMed]
    [Google Scholar]
  37. Williams M. A., Lamb R. A. 1988; Polylactosaminoglycan modification of a small integral membrane glycoprotein, influenza B virus NB. Mol Cell Biol 8:1186–1196[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.063511-0
Loading
/content/journal/jgv/10.1099/vir.0.063511-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error