1887

Abstract

Clade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the reclassification of these viruses into subclades 2.2.1 and 2.2.1.1. Here, we conducted full-genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006–2013 through systematic surveillance in Egypt, and 53 viruses that were sequenced previously and available in the public domain. Results indicated that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.063495-0
2014-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/7/1444.html?itemId=/content/journal/jgv/10.1099/vir.0.063495-0&mimeType=html&fmt=ahah

References

  1. Abdel-Moneim A. S., Shehab G. M., Abu-Elsaad A. A.. ( 2011; ). Molecular evolution of the six internal genes of H5N1 equine influenza A virus. . Arch Virol 156:, 1257–1262. [CrossRef] [PubMed]
    [Google Scholar]
  2. Aly M. M., Arafa A., Hassan M. K.. ( 2008; ). Epidemiological findings of outbreaks of disease caused by highly pathogenic H5N1 avian influenza virus in poultry in Egypt during 2006. . Avian Dis 52:, 269–277. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cai Z., Ducatez M. F., Yang J., Zhang T., Long L. P., Boon A. C., Webby R. J., Wan X. F.. ( 2012; ). Identifying antigenicity-associated sites in highly pathogenic H5N1 influenza virus hemagglutinin by using sparse learning. . J Mol Biol 422:, 145–155. [CrossRef] [PubMed]
    [Google Scholar]
  4. Carrat F., Flahault A.. ( 2007; ). Influenza vaccine: the challenge of antigenic drift. . Vaccine 25:, 6852–6862. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cattoli G., Fusaro A., Monne I., Coven F., Joannis T., El-Hamid H. S., Hussein A. A., Cornelius C., Amarin N. M.. & other authors ( 2011; ). Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. . Vaccine 29:, 9368–9375. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen H., Smith G. J., Zhang S. Y., Qin K., Wang J., Li K. S., Webster R. G., Peiris J. S., Guan Y.. ( 2005; ). Avian flu: H5N1 virus outbreak in migratory waterfowl. . Nature 436:, 191–192. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen G. W., Chang S. C., Mok C. K., Lo Y. L., Kung Y. N., Huang J. H., Shih Y. H., Wang J. Y., Chiang C.. & other authors ( 2006; ). Genomic signatures of human versus avian influenza A viruses. . Emerg Infect Dis 12:, 1353–1360. [CrossRef] [PubMed]
    [Google Scholar]
  8. Dankar S. K., Wang S., Ping J., Forbes N. E., Keleta L., Li Y., Brown E. G.. ( 2011; ). Influenza A virus NS1 gene mutations F103L and M106I increase replication and virulence. . Virol J 8:, 13. [CrossRef] [PubMed]
    [Google Scholar]
  9. Delport W., Poon A. F., Frost S. D., Kosakovsky Pond S. L.. ( 2010; ). Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. . Bioinformatics 26:, 2455–2457. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ducatez M. F., Olinger C. M., Owoade A. A., Tarnagda Z., Tahita M. C., Sow A., De Landtsheer S., Ammerlaan W., Ouedraogo J. B.. & other authors ( 2007; ). Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. . J Gen Virol 88:, 2297–2306. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dundon W. G., Capua I.. ( 2009; ). A closer look at the NS1 of influenza virus. . Viruses 1:, 1057–1072. [CrossRef] [PubMed]
    [Google Scholar]
  12. Earhart K. C., Elsayed N. M., Saad M. D., Gubareva L. V., Nayel A., Deyde V. M., Abdelsattar A., Abdelghani A. S., Boynton B. R.. & other authors ( 2009; ). Oseltamivir resistance mutation N294S in human influenza A(H5N1) virus in Egypt. . J Infect Public Health 2:, 74–80. [CrossRef] [PubMed]
    [Google Scholar]
  13. El-Shesheny R., Kayali G., Kandeil A., Cai Z., Barakat A. B., Ghanim H., Ali M. A.. ( 2012; ). Antigenic diversity and cross-reactivity of avian influenza H5N1 viruses in Egypt between 2006 and 2011. . J Gen Virol 93:, 2564–2574. [CrossRef] [PubMed]
    [Google Scholar]
  14. Eladl A. E., El-Azm K. I., Ismail A. E., Ali A., Saif Y. M., Lee C. W.. ( 2011; ). Genetic characterization of highly pathogenic H5N1 avian influenza viruses isolated from poultry farms in Egypt. . Virus Genes 43:, 272–280. [CrossRef] [PubMed]
    [Google Scholar]
  15. Escorcia M., Vázquez L., Méndez S. T., Rodríguez-Ropón A., Lucio E., Nava G. M.. ( 2008; ). Avian influenza: genetic evolution under vaccination pressure. . Virol J 5:, 15. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fanning A. S., Anderson J. M.. ( 1999; ). PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. . J Clin Invest 103:, 767–772. [CrossRef] [PubMed]
    [Google Scholar]
  17. Fereidouni S. R., Starick E., Grund C., Globig A., Mettenleiter T. C., Beer M., Harder T.. ( 2009; ). Rapid molecular subtyping by reverse transcription polymerase chain reaction of the neuraminidase gene of avian influenza A viruses. . Vet Microbiol 135:, 253–260. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gambotto A., Barratt-Boyes S. M., de Jong M. D., Neumann G., Kawaoka Y.. ( 2008; ). Human infection with highly pathogenic H5N1 influenza virus. . Lancet 371:, 1464–1475. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gao Y., Zhang Y., Shinya K., Deng G., Jiang Y., Li Z., Guan Y., Tian G., Li Y.. & other authors ( 2009; ). Identification of amino acids in HA and PB2 critical for the transmission of H5N1 avian influenza viruses in a mammalian host. . PLoS Pathog 5:, e1000709. [CrossRef] [PubMed]
    [Google Scholar]
  20. Golebiewski L., Liu H., Javier R. T., Rice A. P.. ( 2011; ). The avian influenza virus NS1 ESEV PDZ binding motif associates with Dlg1 and Scribble to disrupt cellular tight junctions. . J Virol 85:, 10639–10648. [CrossRef] [PubMed]
    [Google Scholar]
  21. Govorkova E. A., Baranovich T., Seiler P., Armstrong J., Burnham A., Guan Y., Peiris M., Webby R. J., Webster R. G.. ( 2013; ). Antiviral resistance among highly pathogenic influenza A (H5N1) viruses isolated worldwide in 2002–2012 shows need for continued monitoring. . Antiviral Res 98:, 297–304. [CrossRef] [PubMed]
    [Google Scholar]
  22. Guan Y., Poon L. L., Cheung C. Y., Ellis T. M., Lim W., Lipatov A. S., Chan K. H., Sturm-Ramirez K. M., Cheung C. L.. & other authors ( 2004; ). H5N1 influenza: a protean pandemic threat. . Proc Natl Acad Sci U S A 101:, 8156–8161. [CrossRef] [PubMed]
    [Google Scholar]
  23. Hall T. A.. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  24. Hay A. J., Zambon M. C., Wolstenholme A. J., Skehel J. J., Smith M. H.. ( 1986; ). Molecular basis of resistance of influenza A viruses to amantadine. . J Antimicrob Chemother 18: (Suppl. B ), 19–29.[PubMed]
    [Google Scholar]
  25. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., Sorrell E. M., Bestebroer T. M., Burke D. F.. & other authors ( 2012; ). Airborne transmission of influenza A/H5N1 virus between ferrets. . Science 336:, 1534–1541. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hoffmann E., Stech J., Guan Y., Webster R. G., Perez D. R.. ( 2001; ). Universal primer set for the full-length amplification of all influenza A viruses. . Arch Virol 146:, 2275–2289. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hurt A. C., Holien J. K., Barr I. G.. ( 2009; ). In vitro generation of neuraminidase inhibitor resistance in A(H5N1) influenza viruses. . Antimicrob Agents Chemother 53:, 4433–4440. [CrossRef] [PubMed]
    [Google Scholar]
  28. Ilyushina N. A., Seiler J. P., Rehg J. E., Webster R. G., Govorkova E. A.. ( 2010; ). Effect of neuraminidase inhibitor-resistant mutations on pathogenicity of clade 2.2 A/Turkey/15/06 (H5N1) influenza virus in ferrets. . PLoS Pathog 6:, e1000933. [CrossRef] [PubMed]
    [Google Scholar]
  29. Imai M., Watanabe T., Hatta M., Das S. C., Ozawa M., Shinya K., Zhong G., Hanson A., Katsura H.. & other authors ( 2012; ). Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. . Nature 486:, 420–428. [CrossRef] [PubMed]
    [Google Scholar]
  30. Jackson D., Hossain M. J., Hickman D., Perez D. R., Lamb R. A.. ( 2008; ). A new influenza virus virulence determinant: the NS1 protein four C-terminal residues modulate pathogenicity. . Proc Natl Acad Sci U S A 105:, 4381–4386. [CrossRef] [PubMed]
    [Google Scholar]
  31. Jiao P., Tian G., Li Y., Deng G., Jiang Y., Liu C., Liu W., Bu Z., Kawaoka Y., Chen H.. ( 2008; ). A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. . J Virol 82:, 1146–1154. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kayali G., El-Shesheny R., Kutkat M. A., Kandeil A. M., Mostafa A., Ducatez M. F., McKenzie P. P., Govorkova E. A., Nasraa M. H.. & other authors ( 2011a; ). Continuing threat of influenza (H5N1) virus circulation in Egypt. . Emerg Infect Dis 17:, 2306–2308. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kayali G., Webby R. J., Ducatez M. F., El Shesheny R. A., Kandeil A. M., Govorkova E. A., Mostafa A., Ali M. A.. ( 2011b; ). The epidemiological and molecular aspects of influenza H5N1 viruses at the human–animal interface in Egypt. . PLoS ONE 6:, e17730. [CrossRef] [PubMed]
    [Google Scholar]
  34. Lee C. W., Senne D. A., Suarez D. L.. ( 2004; ). Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. . J Virol 78:, 8372–8381. [CrossRef] [PubMed]
    [Google Scholar]
  35. Lee M. S., Chang P. C., Shien J. H., Cheng M. C., Shieh H. K.. ( 2001; ). Identification and subtyping of avian influenza viruses by reverse transcription-PCR. . J Virol Methods 97:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  36. Li J., Li Y., Hu Y., Chang G., Sun W., Yang Y., Kang X., Wu X., Zhu Q.. ( 2011; ). PB1-mediated virulence attenuation of H5N1 influenza virus in mice is associated with PB2. . J Gen Virol 92:, 1435–1444. [CrossRef] [PubMed]
    [Google Scholar]
  37. Li K. S., Guan Y., Wang J., Smith G. J., Xu K. M., Duan L., Rahardjo A. P., Puthavathana P., Buranathai C.. & other authors ( 2004; ). Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. . Nature 430:, 209–213. [CrossRef] [PubMed]
    [Google Scholar]
  38. Li Z., Jiang Y., Jiao P., Wang A., Zhao F., Tian G., Wang X., Yu K., Bu Z., Chen H.. ( 2006; ). The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. . J Virol 80:, 11115–11123. [CrossRef] [PubMed]
    [Google Scholar]
  39. Lin Y. P., Xiong X., Wharton S. A., Martin S. R., Coombs P. J., Vachieri S. G., Christodoulou E., Walker P. A., Liu J.. & other authors ( 2012; ). Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin. . Proc Natl Acad Sci U S A 109:, 21474–21479. [CrossRef] [PubMed]
    [Google Scholar]
  40. Liu J., Xiao H., Lei F., Zhu Q., Qin K., Zhang X. W., Zhang X. L., Zhao D., Wang G.. & other authors ( 2005; ). Highly pathogenic H5N1 influenza virus infection in migratory birds. . Science 309:, 1206. [CrossRef] [PubMed]
    [Google Scholar]
  41. Liu J., Stevens D. J., Haire L. F., Walker P. A., Coombs P. J., Russell R. J., Gamblin S. J., Skehel J. J.. ( 2009; ). Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. . Proc Natl Acad Sci U S A 106:, 17175–17180. [CrossRef] [PubMed]
    [Google Scholar]
  42. Makkoch J., Suwannakarn K., Payungporn S., Prachayangprecha S., Cheiocharnsin T., Linsuwanon P., Theamboonlers A., Poovorawan Y.. ( 2012; ). Whole genome characterization, phylogenetic and genome signature analysis of human pandemic H1N1 virus in Thailand, 2009–2012. . PLoS ONE 7:, e51275. [CrossRef] [PubMed]
    [Google Scholar]
  43. Meleigy M.. ( 2007; ). Egypt battles with avian influenza. . Lancet 370:, 553–554. [CrossRef] [PubMed]
    [Google Scholar]
  44. Neumann G., Macken C. A., Karasin A. I., Fouchier R. A., Kawaoka Y.. ( 2012; ). Egyptian H5N1 influenza viruses-cause for concern?. PLoS Pathog 8:, e1002932. [CrossRef] [PubMed]
    [Google Scholar]
  45. Obenauer J. C., Denson J., Mehta P. K., Su X., Mukatira S., Finkelstein D. B., Xu X., Wang J., Ma J.. & other authors ( 2006; ). Large-scale sequence analysis of avian influenza isolates. . Science 311:, 1576–1580. [CrossRef] [PubMed]
    [Google Scholar]
  46. Peiris J. S., de Jong M. D., Guan Y.. ( 2007; ). Avian influenza virus (H5N1): a threat to human health. . Clin Microbiol Rev 20:, 243–267. [CrossRef] [PubMed]
    [Google Scholar]
  47. Pinto L. H., Holsinger L. J., Lamb R. A.. ( 1992; ). Influenza virus M2 protein has ion channel activity. . Cell 69:, 517–528. [CrossRef] [PubMed]
    [Google Scholar]
  48. Saad M. D., Ahmed L. S., Gamal-Eldein M. A., Fouda M. K., Khalil F., Yingst S. L., Parker M. A., Montevillel M. R.. ( 2007; ). Possible avian influenza (H5N1) from migratory bird, Egypt. . Emerg Infect Dis 13:, 1120–1121. [CrossRef] [PubMed]
    [Google Scholar]
  49. Schmolke M., Manicassamy B., Pena L., Sutton T., Hai R., Varga Z. T., Hale B. G., Steel J., Pérez D. R., García-Sastre A.. ( 2011; ). Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species. . PLoS Pathog 7:, e1002186. [CrossRef] [PubMed]
    [Google Scholar]
  50. Seo S. H., Hoffmann E., Webster R. G.. ( 2002; ). Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. . Nat Med 8:, 950–954. [CrossRef] [PubMed]
    [Google Scholar]
  51. Shaw M., Cooper L., Xu X., Thompson W., Krauss S., Guan Y., Zhou N., Klimov A., Cox N.. & other authors ( 2002; ). Molecular changes associated with the transmission of avian influenza A H5N1 and H9N2 viruses to humans. . J Med Virol 66:, 107–114. [CrossRef] [PubMed]
    [Google Scholar]
  52. Shih A. C., Hsiao T. C., Ho M. S., Li W. H.. ( 2007; ). Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. . Proc Natl Acad Sci U S A 104:, 6283–6288. [CrossRef] [PubMed]
    [Google Scholar]
  53. Shinya K., Hamm S., Hatta M., Ito H., Ito T., Kawaoka Y.. ( 2004; ). PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in mice. . Virology 320:, 258–266. [CrossRef] [PubMed]
    [Google Scholar]
  54. Soubies S. M., Volmer C., Croville G., Loupias J., Peralta B., Costes P., Lacroux C., Guérin J. L., Volmer R.. ( 2010; ). Species-specific contribution of the four C-terminal amino acids of influenza A virus NS1 protein to virulence. . J Virol 84:, 6733–6747. [CrossRef] [PubMed]
    [Google Scholar]
  55. Subbarao K., Klimov A., Katz J., Regnery H., Lim W., Hall H., Perdue M., Swayne D., Bender C.. & other authors ( 1998; ). Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. . Science 279:, 393–396. [CrossRef] [PubMed]
    [Google Scholar]
  56. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  57. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  58. Wasilenko J. L., Sarmento L., Pantin-Jackwood M. J.. ( 2009; ). A single substitution in amino acid 184 of the NP protein alters the replication and pathogenicity of H5N1 avian influenza viruses in chickens. . Arch Virol 154:, 969–979. [CrossRef] [PubMed]
    [Google Scholar]
  59. Watanabe Y., Ibrahim M. S., Ellakany H. F., Kawashita N., Mizuike R., Hiramatsu H., Sriwilaijaroen N., Takagi T., Suzuki Y., Ikuta K.. ( 2011; ). Acquisition of human-type receptor binding specificity by new H5N1 influenza virus sublineages during their emergence in birds in Egypt. . PLoS Pathog 7:, e1002068. [CrossRef] [PubMed]
    [Google Scholar]
  60. Watanabe Y., Ibrahim M. S., Ellakany H. F., Kawashita N., Daidoji T., Takagi T., Yasunaga T., Nakaya T., Ikuta K.. ( 2012; ). Antigenic analysis of highly pathogenic avian influenza virus H5N1 sublineages co-circulating in Egypt. . J Gen Virol 93:, 2215–2226. [CrossRef] [PubMed]
    [Google Scholar]
  61. WHO ( 2009; ). WHO Information for Laboratory Diagnosis of New Influenza A (H1N1) Virus in Humans. , 21 May 2009. Revised version: http://www.who.int/csr/resources/publications/swineflu/WHO_Diagnostic_RecommendationsH1N1_20090521.pdf.
  62. WHO ( 2013; ). Cumulative number of confirmed human cases of avian influenza A(H5N1) reported to WHO. . http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/.
  63. WHO/OIE/FAO H5N1 Evolution Working Group ( 2008; ). Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1). . Emerg Infect Dis 14:, e1. [CrossRef] [PubMed]
    [Google Scholar]
  64. WHO/OIE/FAO H5N1 Evolution Working Group ( 2009; ). Continuing progress towards a unified nomenclature for the highly pathogenic H5N1 avian influenza viruses: divergence of clade 2.2 viruses. . Influenza Other Respi Viruses 3:, 59–62. [CrossRef] [PubMed]
    [Google Scholar]
  65. WHO/OIE/FAO H5N1 Evolution Working Group ( 2012; ). Continued evolution of highly pathogenic avian influenza A (H5N1): updated nomenclature. . Influenza Other Respi Viruses 6:, 1–5. [CrossRef] [PubMed]
    [Google Scholar]
  66. Yamada S., Hatta M., Staker B. L., Watanabe S., Imai M., Shinya K., Sakai-Tagawa Y., Ito M., Ozawa M.. & other authors ( 2010; ). Biological and structural characterization of a host-adapting amino acid in influenza virus. . PLoS Pathog 6:, e1001034. [CrossRef] [PubMed]
    [Google Scholar]
  67. Yoon S. W., Kayali G., Ali M. A., Webster R. G., Webby R. J., Ducatez M. F.. ( 2013; ). A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity but not the transmission of Egyptian highly pathogenic H5N1 influenza virus in chickens. . J Virol 87:, 4786–4788. [CrossRef] [PubMed]
    [Google Scholar]
  68. Zhang Y., Sun Y., Sun H., Pu J., Bi Y., Shi Y., Lu X., Li J., Zhu Q.. & other authors ( 2012; ). A single amino acid at the hemagglutinin cleavage site contributes to the pathogenicity and neurovirulence of H5N1 influenza virus in mice. . J Virol 86:, 6924–6931. [CrossRef] [PubMed]
    [Google Scholar]
  69. Zielecki F., Semmler I., Kalthoff D., Voss D., Mauel S., Gruber A. D., Beer M., Wolff T.. ( 2010; ). Virulence determinants of avian H5N1 influenza A virus in mammalian and avian hosts: role of the C-terminal ESEV motif in the viral NS1 protein. . J Virol 84:, 10708–10718. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.063495-0
Loading
/content/journal/jgv/10.1099/vir.0.063495-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error