1887

Abstract

The cucumber mosaic virus (CMV) 2b silencing suppressor protein allows the virus to overcome resistance to replication and local movement in inoculated leaves of plants treated with salicylic acid (SA), a resistance-inducing plant hormone. In plants systemically infected with CMV, the 2b protein also primes the induction of SA biosynthesis during this compatible interaction. We found that CMV infection of susceptible tobacco () also induced SA accumulation. Utilization of mutant 2b proteins expressed during infection of tobacco showed that the N- and C-terminal domains, which had previously been implicated in regulation of symptom induction, were both required for subversion of SA-induced resistance, while all mutants tested except those affecting the putative phosphorylation domain had lost the ability to prime SA accumulation and expression of the SA-induced marker gene .

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.063461-0
2014-06-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/6/1408.html?itemId=/content/journal/jgv/10.1099/vir.0.063461-0&mimeType=html&fmt=ahah

References

  1. Bergstrom G. C. , Johnson M. C. , Kuć J. . ( 1982; ). Effects of local infection of cucumber by Colletotrichum lagenarium, Pseudomonas lachrymans, or tobacco necrosis virus on systemic resistance to cucumber mosaic virus. . Phytopathology 72:, 922–926. [CrossRef]
    [Google Scholar]
  2. Brigneti G. , Voinnet O. , Li W. X. , Ji L. H. , Ding S. W. , Baulcombe D. C. . ( 1998; ). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana . . EMBO J 17:, 6739–6746.[CrossRef]
    [Google Scholar]
  3. Carr J. P. , Dixon D. C. , Klessig D. F. . ( 1985; ). Synthesis of pathogenesis-related proteins in tobacco is regulated at the level of mRNA accumulation and occurs on membrane-bound polysomes. . Proc Natl Acad Sci U S A 82:, 7999–8003. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cutt J. R. , Dixon D. C. , Carr J. P. , Klessig D. F. . ( 1988; ). Isolation and nucleotide sequence of cDNA clones for the pathogenesis-related proteins PR1a, PR1b and PR1c of Nicotiana tabacum cv. Xanthi nc induced by TMV infection. . Nucleic Acids Res 16:, 9861. [CrossRef] [PubMed]
    [Google Scholar]
  5. Du Z. , Chen F. , Zhao Z. , Liao Q. , Palukaitis P. , Chen J. . ( 2008; ). The 2b protein and the C-terminus of the 2a protein of cucumber mosaic virus subgroup I strains both play a role in viral RNA accumulation and induction of symptoms. . Virology 380:, 363–370. [CrossRef] [PubMed]
    [Google Scholar]
  6. Gellért A. , Nemes K. , Kádár K. , Salánki K. , Balázs E. . ( 2012; ). The C-terminal domain of the 2b protein of Cucumber mosaic virus is stabilized by divalent metal ion coordination. . J Mol Graph Model 38:, 446–454. [CrossRef] [PubMed]
    [Google Scholar]
  7. González I. , Martínez L. , Rakitina D. V. , Lewsey M. G. , Atencio F. A. , Llave C. , Kalinina N. O. , Carr J. P. , Palukaitis P. , Canto T. . ( 2010; ). Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. . Mol Plant Microbe Interact 23:, 294–303. [CrossRef] [PubMed]
    [Google Scholar]
  8. González I. , Rakitina D. , Semashko M. , Taliansky M. , Praveen S. , Palukaitis P. , Carr J. P. , Kalinina N. , Canto T. . ( 2012; ). RNA binding is more critical to the suppression of silencing function of Cucumber mosaic virus 2b protein than nuclear localization. . RNA 18:, 771–782. [CrossRef] [PubMed]
    [Google Scholar]
  9. Goto K. , Kobori T. , Kosaka Y. , Natsuaki T. , Masuta C. . ( 2007; ). Characterization of silencing suppressor 2b of Cucumber mosaic virus based on examination of its small RNA-binding abilities. . Plant Cell Physiol 48:, 1050–1060. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ham B. K. , Lee T. H. , You J. S. , Nam Y. W. , Kim J. K. , Paek K. H. . ( 1999; ). Isolation of a putative tobacco host factor interacting with cucumber mosaic virus-encoded 2b protein by yeast two-hybrid screening. . Mol Cells 9:, 548–555.[PubMed]
    [Google Scholar]
  11. Harvey J. J. W. , Lewsey M. G. , Patel K. , Westwood J. , Heimstädt S. , Carr J. P. , Baulcombe D. C. . ( 2011; ). An antiviral defense role of AGO2 in plants. . PLoS ONE 6:, e14639. [CrossRef] [PubMed]
    [Google Scholar]
  12. Inaba J. , Kim B. M. , Shimura H. , Masuta C. . ( 2011; ). Virus-induced necrosis is a consequence of direct protein–protein interaction between a viral RNA-silencing suppressor and a host catalase. . Plant Physiol 156:, 2026–2036. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ji L. H. , Ding S. W. . ( 2001; ). The suppressor of transgene RNA silencing encoded by Cucumber mosaic virus interferes with salicylic acid-mediated virus resistance. . Mol Plant Microbe Interact 14:, 715–724. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jovel J. , Walker M. , Sanfaçon H. . ( 2011; ). Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. . Mol Plant Microbe Interact 24:, 706–718. [CrossRef] [PubMed]
    [Google Scholar]
  15. Laird J. , McInally C. , Carr C. , Doddiah S. , Yates G. , Chrysanthou E. , Khattab A. , Love A. J. , Geri C. . & other authors ( 2013; ). Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. . J Gen Virol 94:, 2777–2789. [CrossRef] [PubMed]
    [Google Scholar]
  16. Lee W. S. , Fu S. F. , Verchot-Lubicz J. , Carr J. P. . ( 2011; ). Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. . BMC Plant Biol 11:, 41. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lewsey M. G. , Carr J. P. . ( 2009; ). Effects of DICER-like proteins 2, 3 and 4 on cucumber mosaic virus and tobacco mosaic virus infections in salicylic acid-treated plants. . J Gen Virol 90:, 3010–3014.[CrossRef]
    [Google Scholar]
  18. Lewsey M. , Surette M. , Robertson F. C. , Ziebell H. , Choi S. H. , Ryu K. H. , Canto T. , Palukaitis P. , Payne T. . & other authors ( 2009; ). The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. . Mol Plant Microbe Interact 22:, 642–654. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lewsey M. G. , Murphy A. M. , Maclean D. , Dalchau N. , Westwood J. H. , Macaulay K. , Bennett M. H. , Moulin M. , Hanke D. E. . & other authors ( 2010a; ). Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. . Mol Plant Microbe Interact 23:, 835–845. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lewsey M. G. , González I. , Kalinina N. O. , Palukaitis P. , Canto T. , Carr J. P. . ( 2010b; ). Symptom induction and RNA silencing suppression by the cucumber mosaic virus 2b protein. . Plant Signal Behav 5:, 705–708. [CrossRef] [PubMed]
    [Google Scholar]
  21. Love A. J. , Yun B. W. , Laval V. , Loake G. J. , Milner J. J. . ( 2005; ). Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. . Plant Physiol 139:, 935–948. [CrossRef] [PubMed]
    [Google Scholar]
  22. Malamy J. , Carr J. P. , Klessig D. F. , Raskin I. . ( 1990; ). Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. . Science 250:, 1002–1004. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mayers C. N. , Lee K. C. , Moore C. A. , Wong S. M. , Carr J. P. . ( 2005; ). Salicylic acid-induced resistance to Cucumber mosaic virus in squash and Arabidopsis thaliana: contrasting mechanisms of induction and antiviral action. . Mol Plant Microbe Interact 18:, 428–434. [CrossRef] [PubMed]
    [Google Scholar]
  24. Métraux J. P. , Signer H. , Ryals J. , Ward E. , Wyss-Benz M. , Gaudin J. , Raschdorf K. , Schmid E. , Blum W. , Inverardi B. . ( 1990; ). Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. . Science 250:, 1004–1006. [CrossRef] [PubMed]
    [Google Scholar]
  25. Murphy A. M. , Carr J. P. . ( 2002; ). Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. . Plant Physiol 128:, 552–563. [CrossRef] [PubMed]
    [Google Scholar]
  26. Naylor M. , Murphy A. M. , Berry J. O. , Carr J. P. . ( 1998; ). Salicylic acid can induce resistance to plant virus movement. . Mol Plant Microbe Interact 11:, 860–868. [CrossRef]
    [Google Scholar]
  27. Palukaitis P. , Carr J. P. . ( 2008; ). Plant resistance responses to viruses. . J Plant Pathol 90:, 153–171.
    [Google Scholar]
  28. Palukaitis P. , García-Arenal F. . ( 2003; ). Cucumoviruses. . Adv Virus Res 62:, 241–323. [CrossRef] [PubMed]
    [Google Scholar]
  29. Roossinck M. J. , Palukaitis P. . ( 1990; ). Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA 1 of cucumber mosaic virus. . Mol Plant Microbe Interact 3:, 188–192. [CrossRef]
    [Google Scholar]
  30. Ryabov E. V. , Fraser G. , Mayo M. A. , Barker H. , Taliansky M. . ( 2001; ). Umbravirus gene expression helps potato leafroll virus to invade mesophyll tissues and to be transmitted mechanically between plants. . Virology 286:, 363–372. [CrossRef] [PubMed]
    [Google Scholar]
  31. Smith-Becker J. , Keen N. T. , Becker J. O. . ( 2003; ). Acibenzolar-S-methyl induces resistance to Colletotrichum lagenarium and cucumber mosaic virus in cantaloupe. . Crop Prot 22:, 769–774. [CrossRef]
    [Google Scholar]
  32. Soards A. J. , Murphy A. M. , Palukaitis P. , Carr J. P. . ( 2002; ). Virulence and differential local and systemic spread of Cucumber mosaic virus in tobacco are affected by the CMV 2b protein. . Mol Plant Microbe Interact 15:, 647–653. [CrossRef] [PubMed]
    [Google Scholar]
  33. Sueda K. , Shimura H. , Meguro A. , Uchida T. , Inaba J. , Masuta C. . ( 2010; ). The C-terminal residues of the 2b protein of Cucumber mosaic virus are important for efficient expression in Escherichia coli and DNA-binding. . FEBS Lett 584:, 945–950. [CrossRef] [PubMed]
    [Google Scholar]
  34. Surplus S. L. , Jordan B. R. , Murphy A. M. , Carr J. P. , Thomas B. , Mackerness S. A. H. . ( 1998; ). Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. . Plant Cell Environ 21:, 685–694. [CrossRef]
    [Google Scholar]
  35. Wang X. B. , Jovel J. , Udomporn P. , Wang Y. , Wu Q. , Li W. X. , Gasciolli V. , Vaucheret H. , Ding S. W. . ( 2011; ). The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs direct potent antiviral defense by two cooperative argonautes in Arabidopsis thaliana . . Plant Cell 23:, 1625–1638. [CrossRef] [PubMed]
    [Google Scholar]
  36. Westwood J. H. , Groen S. C. , Du Z. , Murphy A. M. , Anggoro D. T. , Tungadi T. , Luang-In V. , Lewsey M. G. , Rossiter J. T. . & other authors ( 2013; ). A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana . . PLoS ONE 8:, e83066. [CrossRef] [PubMed]
    [Google Scholar]
  37. Whitham S. A. , Quan S. , Chang H.-S. , Cooper B. , Estes B. , Zhu T. , Wang X. , Hou Y.-M. . ( 2003; ). Diverse RNA viruses elicit the expression of common sets of genes in susceptible Arabidopsis thaliana plants. . Plant J 33:, 271–283. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wildermuth M. C. , Dewdney J. , Wu G. , Ausubel F. M. . ( 2001; ). Isochorismate synthase is required to synthesize salicylic acid for plant defence. . Nature 414:, 562–565. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wong C. E. , Carson R. A. J. , Carr J. P. . ( 2002; ). Chemically induced virus resistance in Arabidopsis thaliana is independent of pathogenesis-related protein expression and the NPR1 gene. . Mol Plant Microbe Interact 15:, 75–81. [CrossRef] [PubMed]
    [Google Scholar]
  40. Ye J. , Qu J. , Zhang J. F. , Geng Y. F. , Fang R. X. . ( 2009; ). A critical domain of the Cucumber mosaic virus 2b protein for RNA silencing suppressor activity. . FEBS Lett 583:, 101–106. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.063461-0
Loading
/content/journal/jgv/10.1099/vir.0.063461-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error