1887

Abstract

Dengue virus (DENV; genus ) contains a positive-stranded RNA genome. Binding of DENV to host cells is mediated through domain III of the viral envelope protein. Many therapeutic mAbs against domain III have been generated and characterized because of its high antigenicity. We have previously established a novel PCR method named the linear array epitope (LAE) technique for producing monoclone-like polyclonal antibodies. To prove this method could be utilized to produce antibody against epitopes with low antigenicity, a region of 10 aa (VNIEAEPPFG) from domain III of the envelope protein in DENV serotype 2 (DENV2) was selected to design the primers for the LAE technique. A DNA fragment encoding 10 directed repeats of these 10 aa for producing the tandem-repeated peptides was obtained and fused with glutathione -transferase (GST)-containing vector. This fusion protein (GST-Den EIII-His) was purified from and used as antigen for immunizing rabbits to obtain the polyclonal antibody. Furthermore, the EIII antibody could recognize envelope proteins either ectopically overexpressed or synthesized by DENV2 infection using Western blot and immunofluorescence assays. Most importantly, this antibody was also able to detect DENV2 virions by ELISA, and could block viral entry into BHK-21 cells as shown by immunofluorescence and quantitative real-time PCR assays. Taken together, the LAE technique could be applied successfully for the production of antibodies against antigens with low antigenicity, and shows high potential to produce antibodies with good quality for academic research, diagnosis and even therapeutic applications in the future.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.062562-0
2014-10-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/10/2155.html?itemId=/content/journal/jgv/10.1099/vir.0.062562-0&mimeType=html&fmt=ahah

References

  1. Barratt-Boyes S. M., Vlad A., Finn O. J.. ( 1999;). Immunization of chimpanzees with tumor antigen MUC1 mucin tandem repeat peptide elicits both helper and cytotoxic T-cell responses. . Clin Cancer Res 5:, 1918–1924.[PubMed]
    [Google Scholar]
  2. Beasley D. W., Barrett A. D.. ( 2002;). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. . J Virol 76:, 13097–13100. [CrossRef][PubMed]
    [Google Scholar]
  3. Bhardwaj S., Holbrook M., Shope R. E., Barrett A. D., Watowich S. J.. ( 2001;). Biophysical characterization and vector-specific antagonist activity of domain III of the tick-borne flavivirus envelope protein. . J Virol 75:, 4002–4007. [CrossRef][PubMed]
    [Google Scholar]
  4. Cecilia D., Gould E. A.. ( 1991;). Nucleotide changes responsible for loss of neuroinvasiveness in Japanese encephalitis virus neutralization-resistant mutants. . Virology 181:, 70–77. [CrossRef][PubMed]
    [Google Scholar]
  5. Chávez J. H., Silva J. R., Amarilla A. A., Moraes Figueiredo L. T.. ( 2010;). Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. . Biologicals 38:, 613–618. [CrossRef][PubMed]
    [Google Scholar]
  6. Chiu M. W., Yang Y. L.. ( 2003;). Blocking the dengue virus 2 infections on BHK-21 cells with purified recombinant dengue virus 2 E protein expressed in Escherichia coli. . Biochem Biophys Res Commun 309:, 672–678. [CrossRef][PubMed]
    [Google Scholar]
  7. Chokephaibulkit K., Perng G. C.. ( 2013;). Challenges for the formulation of a universal vaccine against dengue. . Exp Biol Med (Maywood) 238:, 566–578. [CrossRef][PubMed]
    [Google Scholar]
  8. Crill W. D., Chang G. J.. ( 2004;). Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. . J Virol 78:, 13975–13986. [CrossRef][PubMed]
    [Google Scholar]
  9. Crill W. D., Roehrig J. T.. ( 2001;). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. . J Virol 75:, 7769–7773. [CrossRef][PubMed]
    [Google Scholar]
  10. Durbin A. P., Whitehead S. S.. ( 2010;). Dengue vaccine candidates in development. . Curr Top Microbiol Immunol 338:, 129–143.[PubMed]
    [Google Scholar]
  11. Fonseca B. A., Pincus S., Shope R. E., Paoletti E., Mason P. W.. ( 1994;). Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. . Vaccine 12:, 279–285. [CrossRef][PubMed]
    [Google Scholar]
  12. Goncalvez A. P., Men R., Wernly C., Purcell R. H., Lai C. J.. ( 2004a;). Chimpanzee Fab fragments and a derived humanized immunoglobulin G1 antibody that efficiently cross-neutralize dengue type 1 and type 2 viruses. . J Virol 78:, 12910–12918. [CrossRef][PubMed]
    [Google Scholar]
  13. Goncalvez A. P., Purcell R. H., Lai C. J.. ( 2004b;). Epitope determinants of a chimpanzee Fab antibody that efficiently cross-neutralizes dengue type 1 and type 2 viruses map to inside and in close proximity to fusion loop of the dengue type 2 virus envelope glycoprotein. . J Virol 78:, 12919–12928. [CrossRef][PubMed]
    [Google Scholar]
  14. Gromowski G. D., Barrett A. D.. ( 2007;). Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. . Virology 366:, 349–360. [CrossRef][PubMed]
    [Google Scholar]
  15. Gromowski G. D., Barrett N. D., Barrett A. D.. ( 2008;). Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. . J Virol 82:, 8828–8837. [CrossRef][PubMed]
    [Google Scholar]
  16. Gubler D. J.. ( 2002;). Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. . Trends Microbiol 10:, 100–103. [CrossRef][PubMed]
    [Google Scholar]
  17. Guojun W., Wei G., Kedong O., Yi H., Yanfei X., Qingmei C., Yankai Z., Jie W., Hao F. et al. ( 2008;). A novel vaccine targeting gastrin-releasing peptide: efficient inhibition of breast cancer growth in vivo. . Endocr Relat Cancer 15:, 149–159. [CrossRef][PubMed]
    [Google Scholar]
  18. Halstead S. B.. ( 2003;). Neutralization and antibody-dependent enhancement of dengue viruses. . Adv Virus Res 60:, 421–467. [CrossRef][PubMed]
    [Google Scholar]
  19. Halstead S. B., O’Rourke E. J.. ( 1977;). Antibody-enhanced dengue virus infection in primate leukocytes. . Nature 265:, 739–741. [CrossRef][PubMed]
    [Google Scholar]
  20. Heinz F. X., Stiasny K.. ( 2012;). Flaviviruses and flavivirus vaccines. . Vaccine 30:, 4301–4306. [CrossRef][PubMed]
    [Google Scholar]
  21. Hsu C. T., Ting C. Y., Ting C. J., Chen T. Y., Lin C. P., Whang-Peng J., Hwang J.. ( 2000;). Vaccination against gonadotropin-releasing hormone (GnRH) using toxin receptor-binding domain-conjugated GnRH repeats. . Cancer Res 60:, 3701–3705.[PubMed]
    [Google Scholar]
  22. Huang K. J., Yang Y. C., Lin Y. S., Huang J. H., Liu H. S., Yeh T. M., Chen S. H., Liu C. C., Lei H. Y.. ( 2006;). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. . J Immunol 176:, 2825–2832. [CrossRef][PubMed]
    [Google Scholar]
  23. Hung J. J., Hsieh M. T., Young M. J., Kao C. L., King C. C., Chang W.. ( 2004;). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. . J Virol 78:, 378–388. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee H. C., Butler M., Wu S. C.. ( 2012;). Using recombinant DNA technology for the development of live-attenuated dengue vaccines. . Enzyme Microb Technol 51:, 67–72. [CrossRef][PubMed]
    [Google Scholar]
  25. Leng C. H., Liu S. J., Tsai J. P., Li Y. S., Chen M. Y., Liu H. H., Lien S. P., Yueh A., Hsiao K. N. et al. ( 2009;). A novel dengue vaccine candidate that induces cross-neutralizing antibodies and memory immunity. . Microbes Infect 11:, 288–295. [CrossRef][PubMed]
    [Google Scholar]
  26. Lin B., Parrish C. R., Murray J. M., Wright P. J.. ( 1994;). Localization of a neutralizing epitope on the envelope protein of dengue virus type 2. . Virology 202:, 885–890. [CrossRef][PubMed]
    [Google Scholar]
  27. Lok S. M., Kostyuchenko V., Nybakken G. E., Holdaway H. A., Battisti A. J., Sukupolvi-Petty S., Sedlak D., Fremont D. H., Chipman P. R. et al. ( 2008;). Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins. . Nat Struct Mol Biol 15:, 312–317. [CrossRef][PubMed]
    [Google Scholar]
  28. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2003;). A ligand-binding pocket in the dengue virus envelope glycoprotein. . Proc Natl Acad Sci U S A 100:, 6986–6991. [CrossRef][PubMed]
    [Google Scholar]
  29. Modis Y., Ogata S., Clements D., Harrison S. C.. ( 2004;). Structure of the dengue virus envelope protein after membrane fusion. . Nature 427:, 313–319. [CrossRef][PubMed]
    [Google Scholar]
  30. Murphy B. R., Whitehead S. S.. ( 2011;). Immune response to dengue virus and prospects for a vaccine. . Annu Rev Immunol 29:, 587–619. [CrossRef][PubMed]
    [Google Scholar]
  31. Oliphant T., Engle M., Nybakken G. E., Doane C., Johnson S., Huang L., Gorlatov S., Mehlhop E., Marri A. et al. ( 2005;). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. . Nat Med 11:, 522–530. [CrossRef][PubMed]
    [Google Scholar]
  32. Oliphant T., Nybakken G. E., Engle M., Xu Q., Nelson C. A., Sukupolvi-Petty S., Marri A., Lachmi B. E., Olshevsky U. et al. ( 2006;). Antibody recognition and neutralization determinants on domains I and II of West Nile Virus envelope protein. . J Virol 80:, 12149–12159. [CrossRef][PubMed]
    [Google Scholar]
  33. Rajamanonmani R., Nkenfou C., Clancy P., Yau Y. H., Shochat S. G., Sukupolvi-Petty S., Schul W., Diamond M. S., Vasudevan S. G., Lescar J.. ( 2009;). On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. . J Gen Virol 90:, 799–809. [CrossRef][PubMed]
    [Google Scholar]
  34. Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C.. ( 1995;). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. . Nature 375:, 291–298. [CrossRef][PubMed]
    [Google Scholar]
  35. Roehrig J. T., Bolin R. A., Kelly R. G.. ( 1998;). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. . Virology 246:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  36. Schmitz J., Roehrig J., Barrett A., Hombach J.. ( 2011;). Next generation dengue vaccines: a review of candidates in preclinical development. . Vaccine 29:, 7276–7284. [CrossRef][PubMed]
    [Google Scholar]
  37. Shyu Y. C., Lee T. L., Wen S. C., Chen H., Hsiao W. Y., Chen X., Hwang J., Shen C. K.. ( 2007;). Subcellular transport of EKLF and switch-on of murine adult βmaj globin gene transcription. . Mol Cell Biol 27:, 2309–2323. [CrossRef][PubMed]
    [Google Scholar]
  38. Stiasny K., Kiermayr S., Holzmann H., Heinz F. X.. ( 2006;). Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. . J Virol 80:, 9557–9568. [CrossRef][PubMed]
    [Google Scholar]
  39. Sukupolvi-Petty S., Austin S. K., Purtha W. E., Oliphant T., Nybakken G. E., Schlesinger J. J., Roehrig J. T., Gromowski G. D., Barrett A. D. et al. ( 2007;). Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. . J Virol 81:, 12816–12826. [CrossRef][PubMed]
    [Google Scholar]
  40. Sukupolvi-Petty S., Austin S. K., Engle M., Brien J. D., Dowd K. A., Williams K. L., Johnson S., Rico-Hesse R., Harris E. et al. ( 2010;). Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. . J Virol 84:, 9227–9239. [CrossRef][PubMed]
    [Google Scholar]
  41. Thullier P., Demangel C., Bedouelle H., Mégret F., Jouan A., Deubel V., Mazié J. C., Lafaye P.. ( 2001;). Mapping of a dengue virus neutralizing epitope critical for the infectivity of all serotypes: insight into the neutralization mechanism. . J Gen Virol 82:, 1885–1892.[PubMed]
    [Google Scholar]
  42. Volk D. E., Beasley D. W., Kallick D. A., Holbrook M. R., Barrett A. D., Gorenstein D. G.. ( 2004;). Solution structure and antibody binding studies of the envelope protein domain III from the New York strain of West Nile virus. . J Biol Chem 279:, 38755–38761. [CrossRef][PubMed]
    [Google Scholar]
  43. Wan S. W., Lin C. F., Wang S., Chen Y. H., Yeh T. M., Liu H. S., Anderson R., Lin Y. S.. ( 2013;). Current progress in dengue vaccines. . J Biomed Sci 20:, 37. [CrossRef][PubMed]
    [Google Scholar]
  44. Wilder-Smith A., Gubler D. J.. ( 2008;). Geographic expansion of dengue: the impact of international travel. . Med Clin North Am 92:, 1377–1390. . [CrossRef][PubMed]
    [Google Scholar]
  45. Yi H., Rong Y., Yankai Z., Wentao L., Hongxia Z., Jie W., Rongyue C., Taiming L., Jingjing L.. ( 2006;). Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. . Vaccine 24:, 2575–2584. [CrossRef][PubMed]
    [Google Scholar]
  46. Yu S., Wuu A., Basu R., Holbrook M. R., Barrett A. D., Lee J. C.. ( 2004;). Solution structure and structural dynamics of envelope protein domain III of mosquito- and tick-borne flaviviruses. . Biochemistry 43:, 9168–9176. [CrossRef][PubMed]
    [Google Scholar]
  47. Zhang Y., Corver J., Chipman P. R., Zhang W., Pletnev S. V., Sedlak D., Baker T. S., Strauss J. H., Kuhn R. J., Rossmann M. G.. ( 2003;). Structures of immature flavivirus particles. . EMBO J 22:, 2604–2613. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.062562-0
Loading
/content/journal/jgv/10.1099/vir.0.062562-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error