1887

Abstract

The 5′ end of eukaryotic mRNA contains the type-1 (m7GpppNm) or type-2 (m7GpppNmNm) cap structure. Many viruses have evolved various mechanisms to develop their own capping enzymes (e.g. flavivirus and coronavirus) or to ‘steal’ caps from host mRNAs (e.g. influenza virus). Other viruses have developed ‘cap-mimicking’ mechanisms by attaching a peptide to the 5′ end of viral RNA (e.g. picornavirus and calicivirus) or by having a complex 5′ RNA structure (internal ribosome entry site) for translation initiation (e.g. picornavirus, pestivirus and hepacivirus). Here we review the diverse viral RNA capping mechanisms. Using flavivirus as a model, we summarize how a single methyltransferase catalyses two distinct N-7 and 2′- methylations of viral RNA cap in a sequential manner. For antiviral development, a structural feature unique to the flavivirus methyltransferase was successfully used to design selective inhibitors that block viral methyltransferase without affecting host methyltransferases. Functionally, capping is essential for prevention of triphosphate-triggered innate immune activation; N-7 methylation is critical for enhancement of viral translation; and 2′- methylation is important for subversion of innate immune response during viral infection. Flaviviruses defective in 2′- methyltransferase are replicative, but their viral RNAs lack 2′- methylation and are recognized and eliminated by the host immune response. Such mutant viruses could be rationally designed as live attenuated vaccines. This concept has recently been proved with Japanese encephalitis virus and dengue virus. The findings obtained with flavivirus should be applicable to other RNA viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.062208-0
2014-04-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/763.html?itemId=/content/journal/jgv/10.1099/vir.0.062208-0&mimeType=html&fmt=ahah

References

  1. Ahola T., Kääriäinen L.. ( 1995; ). Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP. . Proc Natl Acad Sci U S A 92:, 507–511. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ahola T., Laakkonen P., Vihinen H., Kääriäinen L.. ( 1997; ). Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities. . J Virol 71:, 392–397.[PubMed]
    [Google Scholar]
  3. Assenberg R., Ren J., Verma A., Walter T. S., Alderton D., Hurrelbrink R. J., Fuller S. D., Bressanelli S., Owens R. J.. & other authors ( 2007; ). Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. . J Gen Virol 88:, 2228–2236. [CrossRef] [PubMed]
    [Google Scholar]
  4. Banerjee A. K.. ( 1980; ). 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. . Microbiol Rev 44:, 175–205.[PubMed]
    [Google Scholar]
  5. Benarroch D., Egloff M. P., Mulard L., Guerreiro C., Romette J. L., Canard B.. ( 2004; ). A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. . J Biol Chem 279:, 35638–35643. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bollati M., Milani M., Mastrangelo E., Ricagno S., Tedeschi G., Nonnis S., Decroly E., Selisko B., de Lamballerie X.. & other authors ( 2009; ). Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. . J Mol Biol 385:, 140–152. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bouloy M., Plotch S. J., Krug R. M.. ( 1978; ). Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. . Proc Natl Acad Sci U S A 75:, 4886–4890. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E. J., Canard B., Decroly E.. ( 2010; ). In vitro reconstitution of SARS-coronavirus mRNA cap methylation. . PLoS Pathog 6:, e1000863. [CrossRef] [PubMed]
    [Google Scholar]
  9. Brinton M. A., Dispoto J. H.. ( 1988; ). Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. . Virology 162:, 290–299. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bussetta C., Choi K. H.. ( 2012; ). Dengue virus nonstructural protein 5 adopts multiple conformations in solution. . Biochemistry 51:, 5921–5931. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chen Y., Cai H., Pan J., Xiang N., Tien P., Ahola T., Guo D.. ( 2009; ). Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. . Proc Natl Acad Sci U S A 106:, 3484–3489. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chen Y., Su C., Ke M., Jin X., Xu L., Zhang Z., Wu A., Sun Y., Yang Z.. & other authors ( 2011; ). Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2′-O-methylation by nsp16/nsp10 protein complex. . PLoS Pathog 7:, e1002294. [CrossRef] [PubMed]
    [Google Scholar]
  13. Chen C., Wang Y., Shan C., Sun Y., Xu P., Zhou H., Yang C., Shi P. Y., Rao Z.. & other authors ( 2013a; ). Crystal structure of enterovirus 71 RNA-dependent RNA polymerase complexed with its protein primer VPg: implication for a trans mechanism of VPg uridylylation. . J Virol 87:, 5755–5768. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chen H., Liu L., Jones S. A., Banavali N., Kass J., Li Z., Zhang J., Kramer L. D., Ghosh A. K., Li H.. ( 2013b; ). Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. . Antiviral Res 97:, 232–239. [CrossRef] [PubMed]
    [Google Scholar]
  15. Cho E. J., Takagi T., Moore C. R., Buratowski S.. ( 1997; ). mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. . Genes Dev 11:, 3319–3326. [CrossRef] [PubMed]
    [Google Scholar]
  16. Chung K. Y., Dong H., Chao A. T., Shi P. Y., Lescar J., Lim S. P.. ( 2010; ). Higher catalytic efficiency of N-7-methylation is responsible for processive N-7 and 2′-O methyltransferase activity in dengue virus. . Virology 402:, 52–60. [CrossRef] [PubMed]
    [Google Scholar]
  17. Daffis S., Szretter K. J., Schriewer J., Li J., Youn S., Errett J., Lin T. Y., Schneller S., Züst R.. & other authors ( 2010; ). 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. . Nature 468:, 452–456. [CrossRef] [PubMed]
    [Google Scholar]
  18. Decroly E., Debarnot C., Ferron F., Bouvet M., Coutard B., Imbert I., Gluais L., Papageorgiou N., Sharff A.. & other authors ( 2011; ). Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. . PLoS Pathog 7:, e1002059. [CrossRef] [PubMed]
    [Google Scholar]
  19. Decroly E., Ferron F., Lescar J., Canard B.. ( 2012; ). Conventional and unconventional mechanisms for capping viral mRNA. . Nat Rev Microbiol 10:, 51–65.[PubMed]
    [Google Scholar]
  20. Dias A., Bouvier D., Crépin T., McCarthy A. A., Hart D. J., Baudin F., Cusack S., Ruigrok R. W.. ( 2009; ). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. . Nature 458:, 914–918. [CrossRef] [PubMed]
    [Google Scholar]
  21. Dong H., Ray D., Ren S., Zhang B., Puig-Basagoiti F., Takagi Y., Ho C. K., Li H., Shi P. Y.. ( 2007; ). Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. . J Virol 81:, 4412–4421. [CrossRef] [PubMed]
    [Google Scholar]
  22. Dong H., Ren S., Li H., Shi P. Y.. ( 2008a; ). Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2′-O methylations of viral RNA cap. . Virology 377:, 1–6. [CrossRef] [PubMed]
    [Google Scholar]
  23. Dong H., Ren S., Zhang B., Zhou Y., Puig-Basagoiti F., Li H., Shi P. Y.. ( 2008b; ). West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. . J Virol 82:, 4295–4307. [CrossRef] [PubMed]
    [Google Scholar]
  24. Dong H., Zhang B., Shi P. Y.. ( 2008c; ). Flavivirus methyltransferase: a novel antiviral target. . Antiviral Res 80:, 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  25. Dong H., Zhang B., Shi P. Y.. ( 2008d; ). Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein. . Virology 381:, 123–135. [CrossRef] [PubMed]
    [Google Scholar]
  26. Dong H., Chang D. C., Xie X., Toh Y. X., Chung K. Y., Zou G., Lescar J., Lim S. P., Shi P. Y.. ( 2010a; ). Biochemical and genetic characterization of dengue virus methyltransferase. . Virology 405:, 568–578. [CrossRef] [PubMed]
    [Google Scholar]
  27. Dong H., Liu L., Zou G., Zhao Y., Li Z., Lim S. P., Shi P. Y., Li H.. ( 2010b; ). Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase. . J Biol Chem 285:, 32586–32595. [CrossRef] [PubMed]
    [Google Scholar]
  28. Dong H., Chang D. C., Hua M. H., Lim S. P., Chionh Y. H., Hia F., Lee Y. H., Kukkaro P., Lok S. M.. & other authors ( 2012; ). 2′-O methylation of internal adenosine by flavivirus NS5 methyltransferase. . PLoS Pathog 8:, e1002642. [CrossRef] [PubMed]
    [Google Scholar]
  29. Duangchinda T., Dejnirattisai W., Vasanawathana S., Limpitikul W., Tangthawornchaikul N., Malasit P., Mongkolsapaya J., Screaton G.. ( 2010; ). Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. . Proc Natl Acad Sci U S A 107:, 16922–16927. [CrossRef] [PubMed]
    [Google Scholar]
  30. Egloff M. P., Benarroch D., Selisko B., Romette J. L., Canard B.. ( 2002a; ). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. . EMBO J 21:, 2757–2768. [CrossRef] [PubMed]
    [Google Scholar]
  31. Egloff M. P., Benarroch D., Selisko B., Romette J. L., Canard B.. ( 2002b; ). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. . EMBO J 21:, 2757–2768. [CrossRef] [PubMed]
    [Google Scholar]
  32. Egloff M. P., Decroly E., Malet H., Selisko B., Benarroch D., Ferron F., Canard B.. ( 2007a; ). Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. . J Mol Biol 372:, 723–736. [CrossRef] [PubMed]
    [Google Scholar]
  33. Egloff M. P., Decroly E., Malet H., Selisko B., Benarroch D., Ferron F., Canard B.. ( 2007b; ). Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. . J Mol Biol 372:, 723–736. [CrossRef] [PubMed]
    [Google Scholar]
  34. Fechter P., Mingay L., Sharps J., Chambers A., Fodor E., Brownlee G. G.. ( 2003; ). Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. . J Biol Chem 278:, 20381–20388. [CrossRef] [PubMed]
    [Google Scholar]
  35. Ferrer-Orta C., Arias A., Agudo R., Pérez-Luque R., Escarmís C., Domingo E., Verdaguer N.. ( 2006; ). The structure of a protein primer-polymerase complex in the initiation of genome replication. . EMBO J 25:, 880–888. [CrossRef] [PubMed]
    [Google Scholar]
  36. Fitzgerald K. D., Semler B. L.. ( 2009; ). Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. . Biochim Biophys Acta 1789:, 518–528. [CrossRef] [PubMed]
    [Google Scholar]
  37. Flanegan J. B., Petterson R. F., Ambros V., Hewlett N. J., Baltimore D.. ( 1977; ). Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. . Proc Natl Acad Sci U S A 74:, 961–965. [CrossRef] [PubMed]
    [Google Scholar]
  38. Furuichi Y., Shatkin A. J.. ( 2000; ). Viral and cellular mRNA capping: past and prospects. . Adv Virus Res 55:, 135–184. [CrossRef] [PubMed]
    [Google Scholar]
  39. Garaigorta U., Chisari F. V.. ( 2009; ). Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation. . Cell Host Microbe 6:, 513–522. [CrossRef] [PubMed]
    [Google Scholar]
  40. Geiss B. J., Thompson A. A., Andrews A. J., Sons R. L., Gari H. H., Keenan S. M., Peersen O. B.. ( 2009; ). Analysis of flavivirus NS5 methyltransferase cap binding. . J Mol Biol 385:, 1643–1654. [CrossRef] [PubMed]
    [Google Scholar]
  41. Geiss B. J., Stahla-Beek H. J., Hannah A. M., Gari H. H., Henderson B. R., Saeedi B. J., Keenan S. M.. ( 2011; ). A high-throughput screening assay for the identification of flavivirus NS5 capping enzyme GTP-binding inhibitors: implications for antiviral drug development. . J Biomol Screen 16:, 852–861. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ghosh A., Lima C. D.. ( 2010; ). Enzymology of RNA cap synthesis. . Wiley Interdiscip Rev RNA 1:, 152–172.[PubMed]
    [Google Scholar]
  43. Goodfellow I., Chaudhry Y., Gioldasi I., Gerondopoulos A., Natoni A., Labrie L., Laliberté J. F., Roberts L.. ( 2005; ). Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. . EMBO Rep 6:, 968–972. [CrossRef] [PubMed]
    [Google Scholar]
  44. Gruez A., Selisko B., Roberts M., Bricogne G., Bussetta C., Jabafi I., Coutard B., De Palma A. M., Neyts J., Canard B.. ( 2008; ). The crystal structure of coxsackievirus B3 RNA-dependent RNA polymerase in complex with its protein primer VPg confirms the existence of a second VPg binding site on Picornaviridae polymerases. . J Virol 82:, 9577–9590. [CrossRef] [PubMed]
    [Google Scholar]
  45. Guidotti L. G., Chisari F. V.. ( 2001; ). Noncytolytic control of viral infections by the innate and adaptive immune response. . Annu Rev Immunol 19:, 65–91. [CrossRef] [PubMed]
    [Google Scholar]
  46. Guilligay D., Tarendeau F., Resa-Infante P., Coloma R., Crepin T., Sehr P., Lewis J., Ruigrok R. W., Ortin J.. & other authors ( 2008; ). The structural basis for cap binding by influenza virus polymerase subunit PB2. . Nat Struct Mol Biol 15:, 500–506. [CrossRef] [PubMed]
    [Google Scholar]
  47. Gunther V. J., Putnak R., Eckels K. H., Mammen M. P., Scherer J. M., Lyons A., Sztein M. B., Sun W.. ( 2011; ). A human challenge model for dengue infection reveals a possible protective role for sustained interferon gamma levels during the acute phase of illness. . Vaccine 29:, 3895–3904. [CrossRef] [PubMed]
    [Google Scholar]
  48. Guy B., Almond J. W.. ( 2008; ). Towards a dengue vaccine: progress to date and remaining challenges. . Comp Immunol Microbiol Infect Dis 31:, 239–252. [CrossRef] [PubMed]
    [Google Scholar]
  49. Habjan M., Hubel P., Lacerda L., Benda C., Holze C., Eberl C. H., Mann A., Kindler E., Gil-Cruz C.. & other authors ( 2013; ). Sequestration by IFIT1 impairs translation of 2′O-unmethylated capped RNA. . PLoS Pathog 9:, e1003663. [CrossRef] [PubMed]
    [Google Scholar]
  50. Hanley K. A., Manlucu L. R., Manipon G. G., Hanson C. T., Whitehead S. S., Murphy B. R., Blaney J. E. Jr.. ( 2004; ). Introduction of mutations into the non-structural genes or 3′ untranslated region of an attenuated dengue virus type 4 vaccine candidate further decreases replication in rhesus monkeys while retaining protective immunity. . Vaccine 22:, 3440–3448. [CrossRef] [PubMed]
    [Google Scholar]
  51. Hellen C. U., Sarnow P.. ( 2001; ). Internal ribosome entry sites in eukaryotic mRNA molecules. . Genes Dev 15:, 1593–1612. [CrossRef] [PubMed]
    [Google Scholar]
  52. Issur M., Geiss B. J., Bougie I., Picard-Jean F., Despins S., Mayette J., Hobdey S. E., Bisaillon M.. ( 2009; ). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. . RNA 15:, 2340–2350. [CrossRef] [PubMed]
    [Google Scholar]
  53. Ivanov K. A., Ziebuhr J.. ( 2004; ). Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. . J Virol 78:, 7833–7838. [CrossRef] [PubMed]
    [Google Scholar]
  54. Ivanov K. A., Thiel V., Dobbe J. C., van der Meer Y., Snijder E. J., Ziebuhr J.. ( 2004; ). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. . J Virol 78:, 5619–5632. [CrossRef] [PubMed]
    [Google Scholar]
  55. Jansson A. M., Jakobsson E., Johansson P., Lantez V., Coutard B., de Lamballerie X., Unge T., Jones T. A.. ( 2009; ). Structure of the methyltransferase domain from the Modoc virus, a flavivirus with no known vector. . Acta Crystallogr D Biol Crystallogr 65:, 796–803. [CrossRef] [PubMed]
    [Google Scholar]
  56. Kimura T., Katoh H., Kayama H., Saiga H., Okuyama M., Okamoto T., Umemoto E., Matsuura Y., Yamamoto M., Takeda K.. ( 2013; ). Ifit1 inhibits Japanese encephalitis virus replication through binding to 5′ capped 2′-O unmethylated RNA. . J Virol 87:, 9997–10003. [CrossRef] [PubMed]
    [Google Scholar]
  57. Kroschewski H., Lim S. P., Butcher R. E., Yap T. L., Lescar J., Wright P. J., Vasudevan S. G., Davidson A. D.. ( 2008; ). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. . J Biol Chem 283:, 19410–19421. [CrossRef] [PubMed]
    [Google Scholar]
  58. Lai M. M., Stohlman S. A.. ( 1981; ). Comparative analysis of RNA genomes of mouse hepatitis viruses. . J Virol 38:, 661–670.[PubMed]
    [Google Scholar]
  59. Lai M. M., Patton C. D., Stohlman S. A.. ( 1982; ). Further characterization of mRNA’s of mouse hepatitis virus: presence of common 5′-end nucleotides. . J Virol 41:, 557–565.[PubMed]
    [Google Scholar]
  60. Lee Y. F., Nomoto A., Detjen B. M., Wimmer E.. ( 1977; ). A protein covalently linked to poliovirus genome RNA. . Proc Natl Acad Sci U S A 74:, 59–63. [CrossRef] [PubMed]
    [Google Scholar]
  61. Leyssen P., Balzarini J., De Clercq E., Neyts J.. ( 2005; ). The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase. . J Virol 79:, 1943–1947. [CrossRef] [PubMed]
    [Google Scholar]
  62. Li H., Clum S., You S., Ebner K. E., Padmanabhan R.. ( 1999; ). The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of dengue virus type 2 NS3 converge within a region of 20 amino acids. . J Virol 73:, 3108–3116.[PubMed]
    [Google Scholar]
  63. Li J., Fontaine-Rodriguez E. C., Whelan S. P.. ( 2005; ). Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. . J Virol 79:, 13373–13384. [CrossRef] [PubMed]
    [Google Scholar]
  64. Li J., Wang J. T., Whelan S. P.. ( 2006; ). A unique strategy for mRNA cap methylation used by vesicular stomatitis virus. . Proc Natl Acad Sci U S A 103:, 8493–8498. [CrossRef] [PubMed]
    [Google Scholar]
  65. Li S. H., Dong H., Li X. F., Xie X., Zhao H., Deng Y. Q., Wang X. Y., Ye Q., Zhu S. Y.. & other authors ( 2013; ). Rational design of a flavivirus vaccine by abolishing viral RNA 2′-O methylation. . J Virol 87:, 5812–5819. [CrossRef] [PubMed]
    [Google Scholar]
  66. Lim S. P., Sonntag L. S., Noble C., Nilar S. H., Ng R. H., Zou G., Monaghan P., Chung K. Y., Dong H.. & other authors ( 2011; ). Small molecule inhibitors that selectively block dengue virus methyltransferase. . J Biol Chem 286:, 6233–6240. [CrossRef] [PubMed]
    [Google Scholar]
  67. López-Lastra M., Rivas A., Barría M. I.. ( 2005; ). Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation. . Biol Res 38:, 121–146. [CrossRef] [PubMed]
    [Google Scholar]
  68. Lu G., Gong P.. ( 2013; ). Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. . PLoS Pathog 9:, e1003549. [CrossRef] [PubMed]
    [Google Scholar]
  69. Malet H., Egloff M. P., Selisko B., Butcher R. E., Wright P. J., Roberts M., Gruez A., Sulzenbacher G., Vonrhein C.. & other authors ( 2007; ). Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. . J Biol Chem 282:, 10678–10689. [CrossRef] [PubMed]
    [Google Scholar]
  70. Mastrangelo E., Bollati M., Milani M., Selisko B., Peyrane F., Canard B., Grard G., de Lamballerie X., Bolognesi M.. ( 2007; ). Structural bases for substrate recognition and activity in Meaban virus nucleoside-2′-O-methyltransferase. . Protein Sci 16:, 1133–1145. [CrossRef] [PubMed]
    [Google Scholar]
  71. McCracken S., Fong N., Rosonina E., Yankulov K., Brothers G., Siderovski D., Hessel A., Foster S., Shuman S., Bentley D. L.. ( 1997; ). 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. . Genes Dev 11:, 3306–3318. [CrossRef] [PubMed]
    [Google Scholar]
  72. Niepmann M.. ( 2013; ). Hepatitis C virus RNA translation. . Curr Top Microbiol Immunol 369:, 143–166.[PubMed]
    [Google Scholar]
  73. Ogino T., Banerjee A. K.. ( 2007; ). Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. . Mol Cell 25:, 85–97. [CrossRef] [PubMed]
    [Google Scholar]
  74. Ogino T., Banerjee A. K.. ( 2011; ). An unconventional pathway of mRNA cap formation by vesiculoviruses. . Virus Res 162:, 100–109. [CrossRef] [PubMed]
    [Google Scholar]
  75. Ogino T., Kobayashi M., Iwama M., Mizumoto K.. ( 2005; ). Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. . J Biol Chem 280:, 4429–4435. [CrossRef] [PubMed]
    [Google Scholar]
  76. Ogino T., Yadav S. P., Banerjee A. K.. ( 2010; ). Histidine-mediated RNA transfer to GDP for unique mRNA capping by vesicular stomatitis virus RNA polymerase. . Proc Natl Acad Sci U S A 107:, 3463–3468. [CrossRef] [PubMed]
    [Google Scholar]
  77. Paul A. V., van Boom J. H., Filippov D., Wimmer E.. ( 1998; ). Protein-primed RNA synthesis by purified poliovirus RNA polymerase. . Nature 393:, 280–284. [CrossRef] [PubMed]
    [Google Scholar]
  78. Pichlmair A., Schulz O., Tan C. P., Näslund T. I., Liljeström P., Weber F., Reis e Sousa C.. ( 2006; ). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. . Science 314:, 997–1001. [CrossRef] [PubMed]
    [Google Scholar]
  79. Rahmeh A. A., Li J., Kranzusch P. J., Whelan S. P.. ( 2009; ). Ribose 2′-O methylation of the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-N-7 methylation by the large polymerase protein. . J Virol 83:, 11043–11050. [CrossRef] [PubMed]
    [Google Scholar]
  80. Ray D., Shah A., Tilgner M., Guo Y., Zhao Y., Dong H., Deas T. S., Zhou Y., Li H., Shi P.-Y.. ( 2006; ). West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. . J Virol 80:, 8362–8370. [CrossRef] [PubMed]
    [Google Scholar]
  81. Reinisch K. M., Nibert M. L., Harrison S. C.. ( 2000; ). Structure of the reovirus core at 3.6 A resolution. . Nature 404:, 960–967. [CrossRef] [PubMed]
    [Google Scholar]
  82. Rivino L., Kumaran E. A., Jovanovic V., Nadua K., Teo E. W., Pang S. W., Teo G. H., Gan V. C., Lye D. C.. & other authors ( 2013; ). Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. . J Virol 87:, 2693–2706. [CrossRef] [PubMed]
    [Google Scholar]
  83. Sabchareon A., Wallace D., Sirivichayakul C., Limkittikul K., Chanthavanich P., Suvannadabba S., Jiwariyavej V., Dulyachai W., Pengsaa K.. & other authors ( 2012; ). Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. . Lancet 380:, 1559–1567. [CrossRef] [PubMed]
    [Google Scholar]
  84. Schaffer F. L., Ehresmann D. W., Fretz M. K., Soergel M. I.. ( 1980; ). A protein, VPg, covalently linked to 36S calicivirus RNA. . J Gen Virol 47:, 215–220. [CrossRef] [PubMed]
    [Google Scholar]
  85. Shuman S.. ( 2001; ). Structure, mechanism, and evolution of the mRNA capping apparatus. . Prog Nucleic Acid Res Mol Biol 66:, 1–40. [CrossRef] [PubMed]
    [Google Scholar]
  86. Simmons C. P., Dong T., Chau N. V., Dung N. T., Chau T. N., Thao le T. T., Dung N. T., Hien T. T., Rowland-Jones S., Farrar J.. ( 2005; ). Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. . J Virol 79:, 5665–5675. [CrossRef] [PubMed]
    [Google Scholar]
  87. Stahla-Beek H. J., April D. G., Saeedi B. J., Hannah A. M., Keenan S. M., Geiss B. J.. ( 2012; ). Identification of a novel antiviral inhibitor of the flavivirus guanylyltransferase enzyme. . J Virol 86:, 8730–8739. [CrossRef] [PubMed]
    [Google Scholar]
  88. Sutton G., Grimes J. M., Stuart D. I., Roy P.. ( 2007; ). Bluetongue virus VP4 is an RNA-capping assembly line. . Nat Struct Mol Biol 14:, 449–451. [CrossRef] [PubMed]
    [Google Scholar]
  89. Szretter K. J., Daniels B. P., Cho H., Gainey M. D., Yokoyama W. M., Gale M. Jr, Virgin H. W., Klein R. S., Sen G. C., Diamond M. S.. ( 2012; ). 2′-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. . PLoS Pathog 8:, e1002698. [CrossRef] [PubMed]
    [Google Scholar]
  90. van Duijn L. P., Kasperaitis M., Ameling C., Voorma H. O.. ( 1986; ). Additional methylation at the N(2)-position of the cap of 26S Semliki Forest virus late mRNA and initiation of translation. . Virus Res 5:, 61–66. [CrossRef] [PubMed]
    [Google Scholar]
  91. Vasiljeva L., Merits A., Auvinen P., Kääriäinen L.. ( 2000; ). Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. . J Biol Chem 275:, 17281–17287. [CrossRef] [PubMed]
    [Google Scholar]
  92. Wengler G., Wengler G.. ( 1981; ). Terminal sequences of the genome and replicative-from RNA of the flavivirus West Nile virus: absence of poly(A) and possible role in RNA replication. . Virology 113:, 544–555. [CrossRef] [PubMed]
    [Google Scholar]
  93. Wengler G., Wengler G.. ( 1991; ). The carboxy-terminal part of the NS 3 protein of the West Nile flavivirus can be isolated as a soluble protein after proteolytic cleavage and represents an RNA-stimulated NTPase. . Virology 184:, 707–715. [CrossRef] [PubMed]
    [Google Scholar]
  94. Yap L. J., Luo D., Chung K. Y., Lim S. P., Bodenreider C., Noble C., Shi P. Y., Lescar J.. ( 2010; ). Crystal structure of the dengue virus methyltransferase bound to a 5′-capped octameric RNA. . PLoS ONE 5:, e12836. [CrossRef] [PubMed]
    [Google Scholar]
  95. Yauch L. E., Zellweger R. M., Kotturi M. F., Qutubuddin A., Sidney J., Peters B., Prestwood T. R., Sette A., Shresta S.. ( 2009; ). A protective role for dengue virus-specific CD8+ T cells. . J Immunol 182:, 4865–4873. [CrossRef] [PubMed]
    [Google Scholar]
  96. Yauch L. E., Prestwood T. R., May M. M., Morar M. M., Zellweger R. M., Peters B., Sette A., Shresta S.. ( 2010; ). CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. . J Immunol 185:, 5405–5416. [CrossRef] [PubMed]
    [Google Scholar]
  97. Yuan P., Bartlam M., Lou Z., Chen S., Zhou J., He X., Lv Z., Ge R., Li X.. & other authors ( 2009; ). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. . Nature 458:, 909–913. [CrossRef] [PubMed]
    [Google Scholar]
  98. Yue Z., Maldonado E., Pillutla R., Cho H., Reinberg D., Shatkin A. J.. ( 1997; ). Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. . Proc Natl Acad Sci U S A 94:, 12898–12903. [CrossRef] [PubMed]
    [Google Scholar]
  99. Zhang B., Dong H., Zhou Y., Shi P. Y.. ( 2008; ). Genetic interactions among the West Nile virus methyltransferase, the RNA-dependent RNA polymerase, and the 5′ stem–loop of genomic RNA. . J Virol 82:, 7047–7058. [CrossRef] [PubMed]
    [Google Scholar]
  100. Zhou Y., Ray D., Zhao Y., Dong H., Ren S., Li Z., Guo Y., Bernard K. A., Shi P.-Y., Li H.. ( 2007; ). Structure and function of flavivirus NS5 methyltransferase. . J Virol 81:, 3891–3903. [CrossRef] [PubMed]
    [Google Scholar]
  101. Züst R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B. W., Ziebuhr J., Szretter K. J., Baker S. C., Barchet W.. & other authors ( 2011; ). Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. . Nat Immunol 12:, 137–143. [CrossRef] [PubMed]
    [Google Scholar]
  102. Züst R., Dong H., Li X. F., Chang D. C., Zhang B., Balakrishnan T., Toh Y. X., Jiang T., Li S. H.. & other authors ( 2013; ). Rational design of a live attenuated dengue vaccine: 2′-O-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. . PLoS Pathog 9:, e1003521. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.062208-0
Loading
/content/journal/jgv/10.1099/vir.0.062208-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error