1887

Abstract

A full-length genome infectious clone is a powerful tool for functional assays in virology. In this study, using a chemical synthesized complete genome of Japanese encephalitis virus (JEV) strain SA14 (GenBank accession no. U14163), we constructed a full-length genomic cDNA clone of JEV. The recovered virus from the cDNA clone replicated poorly in baby hamster kidney (BHK-21) cells and in suckling mice brain. Following serial passage in BHK-21 cells, adaptive mutations within the NS2B and NS4A proteins were recovered in the passaged viruses leading to viruses with a large-plaque phenotype. Mutagenesis analysis, using a genome-length RNA and a replicon of JEV, demonstrated that the adaptive mutations restored replication to different degrees, and the restoration efficiencies were in the order: NS2B-T102M<NS4A-R79K<NS2B-T102M+NS4A-R79K. An virulence assay in mice showed that the recombinant virus containing double mutations showed similar virulence to the WT SA14 (GenBank accession no. M55506). This study reports the first chemically synthesized JEV. A reverse genetics assay demonstrated that substitutions of NS2B-T102M and NS4A-R79K altered JEV replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.061838-0
2014-04-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/806.html?itemId=/content/journal/jgv/10.1099/vir.0.061838-0&mimeType=html&fmt=ahah

References

  1. Ambrose R. L., Mackenzie J. M.. ( 2011; ). West Nile virus differentially modulates the unfolded protein response to facilitate replication and immune evasion. . J Virol 85:, 2723–2732. [CrossRef] [PubMed]
    [Google Scholar]
  2. Avirutnan P., Punyadee N., Noisakran S., Komoltri C., Thiemmeca S., Auethavornanan K., Jairungsri A., Kanlaya R., Tangthawornchaikul N.. & other authors ( 2006; ). Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. . J Infect Dis 193:, 1078–1088. [CrossRef] [PubMed]
    [Google Scholar]
  3. Basumatary L. J., Raja D., Bhuyan D., Das M., Goswami M., Kayal A. K.. ( 2013; ). Clinical and radiological spectrum of Japanese encephalitis. . J Neurol Sci 325:, 15–21. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baud F., Karlin S.. ( 1999; ). Measures of residue density in protein structures. . Proc Natl Acad Sci U S A 96:, 12494–12499. [CrossRef] [PubMed]
    [Google Scholar]
  5. Becker M. M., Graham R. L., Donaldson E. F., Rockx B., Sims A. C., Sheahan T., Pickles R. J., Corti D., Johnston R. E.. & other authors ( 2008; ). Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. . Proc Natl Acad Sci U S A 105:, 19944–19949. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bera A. K., Kuhn R. J., Smith J. L.. ( 2007; ). Functional characterization of cis and trans activity of the flavivirus NS2B-NS3 protease. . J Biol Chem 282:, 12883–12892. [CrossRef] [PubMed]
    [Google Scholar]
  7. Brinton M. A., Dispoto J. H.. ( 1988; ). Sequence and secondary structure analysis of the 5′-terminal region of flavivirus genome RNA. . Virology 162:, 290–299. [CrossRef] [PubMed]
    [Google Scholar]
  8. Brinton M. A., Fernandez A. V., Dispoto J. H.. ( 1986; ). The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. . Virology 153:, 113–121. [CrossRef] [PubMed]
    [Google Scholar]
  9. Campbell G. L., Hills S. L., Fischer M., Jacobson J. A., Hoke C. H., Hombach J. M., Marfin A. A., Solomon T., Tsai T. F.. & other authors ( 2011; ). Estimated global incidence of Japanese encephalitis: a systematic review. . Bull World Health Organ 89:, 766–774, 774A–774E. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cello J., Paul A. V., Wimmer E.. ( 2002; ). Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. . Science 297:, 1016–1018. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chambers T. J., Grakoui A., Rice C. M.. ( 1991; ). Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. . J Virol 65:, 6042–6050.[PubMed]
    [Google Scholar]
  12. Chambers T. J., Nestorowicz A., Amberg S. M., Rice C. M.. ( 1993; ). Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. . J Virol 67:, 6797–6807.[PubMed]
    [Google Scholar]
  13. Clum S., Ebner K. E., Padmanabhan R.. ( 1997; ). Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. . J Biol Chem 272:, 30715–30723. [CrossRef] [PubMed]
    [Google Scholar]
  14. de Planque M. R., Kruijtzer J. A., Liskamp R. M., Marsh D., Greathouse D. V., Koeppe R. E. II, de Kruijff B., Killian J. A.. ( 1999; ). Different membrane anchoring positions of tryptophan and lysine in synthetic transmembrane α-helical peptides. . J Biol Chem 274:, 20839–20846. [CrossRef] [PubMed]
    [Google Scholar]
  15. Evans J. G., Grant D. I.. ( 1977; ). A mixed mesodermal tumour in the uterus of a cat. . J Comp Pathol 87:, 635–638. [CrossRef] [PubMed]
    [Google Scholar]
  16. Falgout B., Miller R. H., Lai C. J.. ( 1993; ). Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B-NS3 protease activity. . J Virol 67:, 2034–2042.[PubMed]
    [Google Scholar]
  17. Gleason N. J., Vostrikov V. V., Greathouse D. V., Koeppe R. E. II. ( 2013; ). Buried lysine, but not arginine, titrates and alters transmembrane helix tilt. . Proc Natl Acad Sci U S A 110:, 1692–1695. [CrossRef] [PubMed]
    [Google Scholar]
  18. Jan L. R., Yang C. S., Trent D. W., Falgout B., Lai C. J.. ( 1995; ). Processing of Japanese encephalitis virus non-structural proteins: NS2B–NS3 complex and heterologous proteases. . J Gen Virol 76:, 573–580. [CrossRef] [PubMed]
    [Google Scholar]
  19. Junaid M., Chalayut C., Sehgelmeble Torrejon A., Angsuthanasombat C., Shutava I., Lapins M., Wikberg J. E., Katzenmeier G.. ( 2012; ). Enzymatic analysis of recombinant Japanese encephalitis virus NS2B(H)-NS3pro protease with fluorogenic model peptide substrates. . PLoS ONE 7:, e36872. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kollaritsch H., Paulke-Korinek M., Dubischar-Kastner K.. ( 2009; ). IC51 Japanese encephalitis vaccine. . Expert Opin Biol Ther 9:, 921–931. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lee Y. N., Bieniasz P. D.. ( 2007; ). Reconstitution of an infectious human endogenous retrovirus. . PLoS Pathog 3:, e10. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lindenbach B. D., Rice C. M.. ( 1997; ). trans-Complementation of yellow fever virus NS1 reveals a role in early RNA replication. . J Virol 71:, 9608–9617.[PubMed]
    [Google Scholar]
  23. Lindenbach B. D., Rice C. M.. ( 1999; ). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. . J Virol 73:, 4611–4621.[PubMed]
    [Google Scholar]
  24. Lindenbach B. D., Thiel H. J., Rice C. M.. ( 2007;). Flaviviridae: the viruses and their replication. . In Fields Virology, , 5th edn., pp. 1101–1152. Edited by Knipe D. M., Howley P. M... Philadelphia:: Lippincott Williams & Wilkins.;
    [Google Scholar]
  25. Liu W. J., Wang X. J., Mokhonov V. V., Shi P. Y., Randall R., Khromykh A. A.. ( 2005; ). Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins. . J Virol 79:, 1934–1942. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lo M. K., Tilgner M., Shi P. Y.. ( 2003; ). Potential high-throughput assay for screening inhibitors of West Nile virus replication. . J Virol 77:, 12901–12906. [CrossRef] [PubMed]
    [Google Scholar]
  27. McLean J. E., Wudzinska A., Datan E., Quaglino D., Zakeri Z.. ( 2011; ). Flavivirus NS4A-induced autophagy protects cells against death and enhances virus replication. . J Biol Chem 286:, 22147–22159. [CrossRef] [PubMed]
    [Google Scholar]
  28. Miller S., Kastner S., Krijnse-Locker J., Bühler S., Bartenschlager R.. ( 2007; ). The non-structural protein 4A of dengue virus is an integral membrane protein inducing membrane alterations in a 2K-regulated manner. . J Biol Chem 282:, 8873–8882. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ni H., Barrett A. D.. ( 1996; ). Molecular differences between wild-type Japanese encephalitis virus strains of high and low mouse neuroinvasiveness. . J Gen Virol 77:, 1449–1455. [CrossRef] [PubMed]
    [Google Scholar]
  30. Ni H., Burns N. J., Chang G. J., Zhang M. J., Wills M. R., Trent D. W., Sanders P. G., Barrett A. D.. ( 1994; ). Comparison of nucleotide and deduced amino acid sequence of the 5′ non-coding region and structural protein genes of the wild-type Japanese encephalitis virus strain SA14 and its attenuated vaccine derivatives. . J Gen Virol 75:, 1505–1510. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ni H., Chang G. J., Xie H., Trent D. W., Barrett A. D.. ( 1995; ). Molecular basis of attenuation of neurovirulence of wild-type Japanese encephalitis virus strain SA14. . J Gen Virol 76:, 409–413. [CrossRef] [PubMed]
    [Google Scholar]
  32. Nitayaphan S., Grant J. A., Chang G. J., Trent D. W.. ( 1990; ). Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. . Virology 177:, 541–552. [CrossRef] [PubMed]
    [Google Scholar]
  33. Orlinger K. K., Holzer G. W., Schwaiger J., Mayrhofer J., Schmid K., Kistner O., Noel Barrett P., Falkner F. G.. ( 2010; ). An inactivated West Nile Virus vaccine derived from a chemically synthesized cDNA system. . Vaccine 28:, 3318–3324. [CrossRef] [PubMed]
    [Google Scholar]
  34. Radichev I., Shiryaev S. A., Aleshin A. E., Ratnikov B. I., Smith J. W., Liddington R. C., Strongin A. Y.. ( 2008; ). Structure-based mutagenesis identifies important novel determinants of the NS2B cofactor of the West Nile virus two-component NS2B-NS3 proteinase. . J Gen Virol 89:, 636–641. [CrossRef] [PubMed]
    [Google Scholar]
  35. Ryan M. D., Monaghan S., Flint M.. ( 1998; ). Virus-encoded proteinases of the Flaviviridae . . J Gen Virol 79:, 947–959.[PubMed]
    [Google Scholar]
  36. Sampath A., Padmanabhan R.. ( 2009; ). Molecular targets for flavivirus drug discovery. . Antiviral Res 81:, 6–15. [CrossRef] [PubMed]
    [Google Scholar]
  37. Shi P. Y., Brinton M. A., Veal J. M., Zhong Y. Y., Wilson W. D.. ( 1996; ). Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. . Biochemistry 35:, 4222–4230. [CrossRef] [PubMed]
    [Google Scholar]
  38. Shiryaev S. A., Ratnikov B. I., Chekanov A. V., Sikora S., Rozanov D. V., Godzik A., Wang J., Smith J. W., Huang Z.. & other authors ( 2006; ). Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. . Biochem J 393:, 503–511. [CrossRef] [PubMed]
    [Google Scholar]
  39. Song B. H., Yun G. N., Kim J. K., Yun S. I., Lee Y. M.. ( 2012; ). Biological and genetic properties of SA14-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. . J Microbiol 50:, 698–706. [CrossRef] [PubMed]
    [Google Scholar]
  40. Tajima S., Nerome R., Nukui Y., Kato F., Takasaki T., Kurane I.. ( 2010; ). A single mutation in the Japanese encephalitis virus E protein (S123R) increases its growth rate in mouse neuroblastoma cells and its pathogenicity in mice. . Virology 396:, 298–304. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tan C. S., Hobson-Peters J. M., Stoermer M. J., Fairlie D. P., Khromykh A. A., Hall R. A.. ( 2013; ). An interaction between the methyltransferase and RNA dependent RNA polymerase domains of the West Nile virus NS5 protein. . J Gen Virol 94:, 1961–1971. [CrossRef] [PubMed]
    [Google Scholar]
  42. Tumpey T. M., Basler C. F., Aguilar P. V., Zeng H., Solórzano A., Swayne D. E., Cox N. J., Katz J. M., Taubenberger J. K.. & other authors ( 2005; ). Characterization of the reconstructed 1918 Spanish influenza pandemic virus. . Science 310:, 77–80. [CrossRef] [PubMed]
    [Google Scholar]
  43. Yamaguchi Y., Nukui Y., Tajima S., Nerome R., Kato F., Watanabe H., Takasaki T., Kurane I.. ( 2011; ). An amino acid substitution (V3I) in the Japanese encephalitis virus NS4A protein increases its virulence in mice, but not its growth rate in vitro. . J Gen Virol 92:, 1601–1606. [CrossRef] [PubMed]
    [Google Scholar]
  44. Ye Q., Li X. F., Zhao H., Li S. H., Deng Y. Q., Cao R. Y., Song K. Y., Wang H. J., Hua R. H.. & other authors ( 2012; ). A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1′ formation and contributes to attenuation. . J Gen Virol 93:, 1959–1964. [CrossRef] [PubMed]
    [Google Scholar]
  45. Yu Y.. ( 2010; ). Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. . Vaccine 28:, 3635–3641. [CrossRef] [PubMed]
    [Google Scholar]
  46. Yu L., Takeda K., Markoff L.. ( 2013; ). Protein–protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. . Virology 446:, 365–377. [CrossRef] [PubMed]
    [Google Scholar]
  47. Zhao Z., Date T., Li Y., Kato T., Miyamoto M., Yasui K., Wakita T.. ( 2005; ). Characterization of the E-138 (Glu/Lys) mutation in Japanese encephalitis virus by using a stable, full-length, infectious cDNA clone. . J Gen Virol 86:, 2209–2220. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.061838-0
Loading
/content/journal/jgv/10.1099/vir.0.061838-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error