Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin Free

Abstract

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih , ,  , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.061598-0
2014-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/5/1033.html?itemId=/content/journal/jgv/10.1099/vir.0.061598-0&mimeType=html&fmt=ahah

References

  1. Bautista E., Chotpitayasunondh T., Gao Z., Harper S. A., Shaw M., Uyeki T. M., Zaki S. R., Hayden F. G., Hui D. S.other authors 2010; Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N Engl J Med 362:1708–1719 [View Article][PubMed]
    [Google Scholar]
  2. Bembridge G. P., Garcia-Beato R., López J. A., Melero J. A., Taylor G. 1998; Subcellular site of expression and route of vaccination influence pulmonary eosinophilia following respiratory syncytial virus challenge in BALB/c mice sensitized to the attachment G protein. J Immunol 161:2473–2480[PubMed]
    [Google Scholar]
  3. Blasco R., Moss B. 1995; Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene 158:157–162 [View Article][PubMed]
    [Google Scholar]
  4. Brownlee G. G., Fodor E. 2001; The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philos Trans R Soc Lond B Biol Sci 356:1871–1876 [View Article][PubMed]
    [Google Scholar]
  5. Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W. 1982; The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417–427 [View Article][PubMed]
    [Google Scholar]
  6. Couch R. B., Kasel J. A. 1983; Immunity to influenza in man. Annu Rev Microbiol 37:529–549 [View Article][PubMed]
    [Google Scholar]
  7. Gamblin S. J., Skehel J. J. 2010; Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285:28403–28409 [View Article][PubMed]
    [Google Scholar]
  8. García-Barreno B., Palomo C., Peñas C., Delgado T., Perez-Breña P., Melero J. A. 1989; Marked differences in the antigenic structure of human respiratory syncytial virus F and G glycoproteins. J Virol 63:925–932[PubMed]
    [Google Scholar]
  9. Garten R. J., Davis C. T., Russell C. A., Shu B., Lindstrom S., Balish A., Sessions W. M., Xu X., Skepner E.other authors 2009; Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201 [View Article][PubMed]
    [Google Scholar]
  10. Hancock K., Veguilla V., Lu X., Zhong W., Butler E. N., Sun H., Liu F., Dong L., DeVos J. R.other authors 2009; Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 361:1945–1952 [View Article][PubMed]
    [Google Scholar]
  11. Itoh Y., Shinya K., Kiso M., Watanabe T., Sakoda Y., Hatta M., Muramoto Y., Tamura D., Sakai-Tagawa Y.other authors 2009; In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025[PubMed]
    [Google Scholar]
  12. Knossow M., Skehel J. J. 2006; Variation and infectivity neutralization in influenza. Immunology 119:1–7 [View Article][PubMed]
    [Google Scholar]
  13. Koel B. F., Burke D. F., Bestebroer T. M., van der Vliet S., Zondag G. C., Vervaet G., Skepner E., Lewis N. S., Spronken M. I.other authors 2013; Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science 342:976–979 [View Article][PubMed]
    [Google Scholar]
  14. Koopmans M., Wilbrink B., Conyn M., Natrop G., van der Nat H., Vennema H., Meijer A., van Steenbergen J., Fouchier R.other authors 2004; Transmission of H7N7 avian influenza A virus to human beings during a large outbreak in commercial poultry farms in the Netherlands. Lancet 363:587–593 [View Article][PubMed]
    [Google Scholar]
  15. Krause J. C., Tumpey T. M., Huffman C. J., McGraw P. A., Pearce M. B., Tsibane T., Hai R., Basler C. F., Crowe J. E. Jr 2010; Naturally occurring human monoclonal antibodies neutralize both 1918 and 2009 pandemic influenza A (H1N1) viruses. J Virol 84:3127–3130 [View Article][PubMed]
    [Google Scholar]
  16. Magro M., Mas V., Chappell K., Vázquez M., Cano O., Luque D., Terrón M. C., Melero J. A., Palomo C. 2012; Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc Natl Acad Sci U S A 109:3089–3094 [View Article][PubMed]
    [Google Scholar]
  17. Manicassamy B., Medina R. A., Hai R., Tsibane T., Stertz S., Nistal-Villán E., Palese P., Basler C. F., García-Sastre A. 2010; Protection of mice against lethal challenge with 2009 H1N1 influenza A virus by 1918-like and classical swine H1N1 based vaccines. PLoS Pathog 6:e1000745 [View Article][PubMed]
    [Google Scholar]
  18. Masoodi T. A., Shaik N. A., Shafi G., Munshi A., Ahamed A. K., Masoodi Z. A. 2012; Comparative analysis of hemagglutinin of 2009 H1N1 influenza A pandemic indicates its evolution to 1918 H1N1 pandemic. Gene 491:200–204 [View Article][PubMed]
    [Google Scholar]
  19. O’Donnell C. D., Vogel L., Wright A., Das S. R., Wrammert J., Li G. M., McCausland M., Zheng N. Y., Yewdell J. W.other authors 2012; Antibody pressure by a human monoclonal antibody targeting the 2009 pandemic H1N1 virus hemagglutinin drives the emergence of a virus with increased virulence in mice. MBio 3:[PubMed]
    [Google Scholar]
  20. Rodriguez A., Falcon A., Cuevas M. T., Pozo F., Guerra S., García-Barreno B., Martinez-Orellana P., Pérez-Breña P., Montoya M.other authors 2013; Characterization in vitro and in vivo of a pandemic H1N1 influenza virus from a fatal case. PLoS ONE 8:e53515 [View Article][PubMed]
    [Google Scholar]
  21. Sánchez-Fauquier A., Villanueva N., Melero J. A. 1987; Isolation of cross-reactive, subtype-specific monoclonal antibodies against influenza virus HA1 and HA2 hemagglutinin subunits. Arch Virol 97:251–265 [View Article][PubMed]
    [Google Scholar]
  22. Shih A. C., Hsiao T. C., Ho M. S., Li W. H. 2007; Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. Proc Natl Acad Sci U S A 104:6283–6288 [View Article][PubMed]
    [Google Scholar]
  23. Smith D. J., Lapedes A. S., de Jong J. C., Bestebroer T. M., Rimmelzwaan G. F., Osterhaus A. D., Fouchier R. A. 2004; Mapping the antigenic and genetic evolution of influenza virus. Science 305:371–376 [View Article][PubMed]
    [Google Scholar]
  24. Smith G. J., Vijaykrishna D., Bahl J., Lycett S. J., Worobey M., Pybus O. G., Ma S. K., Cheung C. L., Raghwani J.other authors 2009; Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125 [View Article][PubMed]
    [Google Scholar]
  25. Tong S., Li Y., Rivailler P., Conrardy C., Castillo D. A., Chen L. M., Recuenco S., Ellison J. A., Davis C. T.other authors 2012; A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109:4269–4274 [View Article][PubMed]
    [Google Scholar]
  26. Tong S., Zhu X., Li Y., Shi M., Zhang J., Bourgeois M., Yang H., Chen X., Recuenco S.other authors 2013; New World bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657 [View Article][PubMed]
    [Google Scholar]
  27. Tumpey T. M., García-Sastre A., Taubenberger J. K., Palese P., Swayne D. E., Basler C. F. 2004; Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc Natl Acad Sci U S A 101:3166–3171 [View Article][PubMed]
    [Google Scholar]
  28. Uyeki T. M., Cox N. J. 2013; Global concerns regarding novel influenza A (H7N9) virus infections. N Engl J Med 368:1862–1864 [View Article][PubMed]
    [Google Scholar]
  29. Wang M. L., Skehel J. J., Wiley D. C. 1986; Comparative analyses of the specificities of anti-influenza hemagglutinin antibodies in human sera. J Virol 57:124–128[PubMed]
    [Google Scholar]
  30. WHO 2011; Update on human cases of highly pathogenic avian influenza A(H5N1) virus infection, 2010. Wkly Epidemiol Rec 86:161–166[PubMed]
    [Google Scholar]
  31. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378 [View Article][PubMed]
    [Google Scholar]
  32. Wright P. F., Neumann G., Kawaoka Y. 2007; Orthomyxoviruses. In Fields Virology, 5th edn. pp. 1691–1740 Edited by Knipe D. M., Howley P. M. Philadelphia: Wolters Kluwer/Lippincott Wlliams & Wilkins;
    [Google Scholar]
  33. Xu R., Ekiert D. C., Krause J. C., Hai R., Crowe J. E. Jr, Wilson I. A. 2010; Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science 328:357–360 [View Article][PubMed]
    [Google Scholar]
  34. Yu X., Tsibane T., McGraw P. A., House F. S., Keefer C. J., Hicar M. D., Tumpey T. M., Pappas C., Perrone L. A.other authors 2008; Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455:532–536 [View Article][PubMed]
    [Google Scholar]
  35. Zhang W., Qi J., Shi Y., Li Q., Gao F., Sun Y., Lu X., Lu Q., Vavricka C. J.other authors 2010; Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus. Protein Cell 1:459–467 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.061598-0
Loading
/content/journal/jgv/10.1099/vir.0.061598-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed