Cyclovirus in nasopharyngeal aspirates of Chilean children with respiratory infections Free

Abstract

Some respiratory tract infections remain unexplained despite extensive testing for common pathogens. Nasopharyngeal aspirates (NPAs) from 120 Chilean infants from Santiago with acute lower respiratory tract infections were analysed by viral metagenomics, revealing the presence of nucleic acids from anelloviruses, adenovirus-associated virus and 12 known respiratory viral pathogens. A single sequence read showed translated protein similarity to cycloviruses. We used inverse PCR to amplify the complete circular ssDNA genome of a novel cyclovirus we named CyCV-ChileNPA1. Closely related variants were detected using PCR in the NPAs of three other affected children that also contained anelloviruses. This report increases the current knowledge of the genetic diversity of cycloviruses whose detection in multiple NPAs may reflect a tropism for human respiratory tissues.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.061143-0
2014-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/922.html?itemId=/content/journal/jgv/10.1099/vir.0.061143-0&mimeType=html&fmt=ahah

References

  1. Avendaño L. F., Palomino M. A., Larrañaga C. 2003; Surveillance for respiratory syncytial virus in infants hospitalized for acute lower respiratory infection in Chile (1989 to 2000). J Clin Microbiol 41:4879–4882 [View Article][PubMed]
    [Google Scholar]
  2. Burián Z., Szabó H., Székely G., Gyurkovits K., Pankovics P., Farkas T., Reuter G. 2011; Detection and follow-up of torque teno midi virus (‘small anelloviruses’) in nasopharyngeal aspirates and three other human body fluids in children. Arch Virol 156:1537–1541 [View Article][PubMed]
    [Google Scholar]
  3. Dayaram A., Potter K. A., Moline A. B., Rosenstein D. D., Marinov M., Thomas J. E., Breitbart M., Rosario K., Argüello-Astorga G. R., Varsani A. 2013; High global diversity of cycloviruses amongst dragonflies. J Gen Virol 94:1827–1840 [View Article][PubMed]
    [Google Scholar]
  4. De Vlaminck I., Khush K. K., Strehl C., Kohli B., Luikart H., Neff N. F., Okamoto J., Snyder T. M., Cornfield D. N.other authors 2013; Temporal response of the human virome to immunosuppression and antiviral therapy. Cell 155:1178–1187 [View Article][PubMed]
    [Google Scholar]
  5. Ge X., Li J., Peng C., Wu L., Yang X., Wu Y., Zhang Y., Shi Z. 2011; Genetic diversity of novel circular ssDNA viruses in bats in China. J Gen Virol 92:2646–2653 [View Article][PubMed]
    [Google Scholar]
  6. Jartti T., Jartti L., Ruuskanen O., Söderlund-Venermo M. 2012; New respiratory viral infections. Curr Opin Pulm Med 18:271–278 [View Article][PubMed]
    [Google Scholar]
  7. Li L., Kapoor A., Slikas B., Bamidele O. S., Wang C., Shaukat S., Masroor M. A., Wilson M. L., Ndjango J. B.other authors 2010; Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682 [View Article][PubMed]
    [Google Scholar]
  8. Li L., Shan T., Soji O. B., Alam M. M., Kunz T. H., Zaidi S. Z., Delwart E. 2011; Possible cross-species transmission of circoviruses and cycloviruses among farm animals. J Gen Virol 92:768–772 [View Article][PubMed]
    [Google Scholar]
  9. Li L., Deng X., Linsuwanon P., Bangsberg D., Bwana M. B., Hunt P., Martin J. N., Deeks S. G., Delwart E. 2013; AIDS alters the commensal plasma virome. J Virol 87:10912–10915 [View Article][PubMed]
    [Google Scholar]
  10. Londoño A., Riego-Ruiz L., Argüello-Astorga G. R. 2010; DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. Arch Virol 155:1033–1046 [View Article][PubMed]
    [Google Scholar]
  11. Maggi F., Pifferi M., Tempestini E., Fornai C., Lanini L., Andreoli E., Vatteroni M., Presciuttini S., Pietrobelli A.other authors 2003; TT virus loads and lymphocyte subpopulations in children with acute respiratory diseases. J Virol 77:9081–9083 [View Article][PubMed]
    [Google Scholar]
  12. McElvania TeKippe E., Wylie K. M., Deych E., Sodergren E., Weinstock G., Storch G. A. 2012; Increased prevalence of anellovirus in pediatric patients with fever. PLoS ONE 7:e50937 [View Article][PubMed]
    [Google Scholar]
  13. Okamoto H. 2009a; History of discoveries and pathogenicity of TT viruses. Curr Top Microbiol Immunol 331:1–20[PubMed]
    [Google Scholar]
  14. Okamoto H. 2009b; TT viruses in animals. Curr Top Microbiol Immunol 331:35–52[PubMed]
    [Google Scholar]
  15. Padilla-Rodriguez M., Rosario K., Breitbart M. 2013; Novel cyclovirus discovered in the Florida woods cockroach Eurycotis floridana (Walker). Arch Virol 158:1389–1392 [View Article][PubMed]
    [Google Scholar]
  16. Rammohan L., Xue L., Wang C., Chittick W., Ganesan S., Ramamoorthy S. 2012; Increased prevalence of torque teno viruses in porcine respiratory disease complex affected pigs. Vet Microbiol 157:61–68 [View Article][PubMed]
    [Google Scholar]
  17. Rosario K., Marinov M., Stainton D., Kraberger S., Wiltshire E. J., Collings D. A., Walters M., Martin D. P., Breitbart M., Varsani A. 2011; Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol 92:1302–1308 [View Article][PubMed]
    [Google Scholar]
  18. Rosario K., Duffy S., Breitbart M. 2012; A field guide to eukaryotic circular single-stranded DNA viruses: insights gained from metagenomics. Arch Virol 157:1851–1871 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Smits S. L., Zijlstra E. E., van Hellemond J. J., Schapendonk C. M., Bodewes R., Schürch A. C., Haagmans B. L., Osterhaus A. D. 2013; Novel cyclovirus in human cerebrospinal fluid, Malawi, 2010-2011. Emerg Infect Dis [Internet] 19: [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  22. Tan L. V., van Doorn H. R., Nghia H. D., Chau T. T., Tu L. T., de Vries M., Canuti M., Deijs M., Jebbink M. F.other authors 2013; Identification of a new cyclovirus in cerebrospinal fluid of patients with acute central nervous system infections. mBio 4:e00231-13 [View Article][PubMed]
    [Google Scholar]
  23. Victoria J. G., Kapoor A., Li L., Blinkova O., Slikas B., Wang C., Naeem A., Zaidi S., Delwart E. 2009; Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83:4642–4651 [View Article][PubMed]
    [Google Scholar]
  24. Wootton S. C., Kim D. S., Kondoh Y., Chen E., Lee J. S., Song J. W., Huh J. W., Taniguchi H., Chiu C.other authors 2011; Viral infection in acute exacerbation of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183:1698–1702 [View Article][PubMed]
    [Google Scholar]
  25. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.061143-0
Loading
/content/journal/jgv/10.1099/vir.0.061143-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed