1887

Abstract

Baculoviruses infect insects, producing two distinct phenotypes during the viral life cycle: the budded virus (BV) and the occlusion-derived virus (ODV) for intra- and inter-host spread, respectively. Since the 1980s, several countries have been using multiple nucleopolyhedrovirus (AgMNPV) as a biological control agent against the velvet bean caterpillar, . The genome of AgMNPV isolate 2D (AgMNPV-2D) carries at least 152 potential genes, with 24 that possibly code for structural proteins. Proteomic studies have been carried out on a few baculoviruses, with six ODV and two BV proteomes completed so far. Moreover, there are limited data on virion proteins carried by AgMNPV-2D. Therefore, structural proteins of AgMNPV-2D were analysed by MALDI- quadrupole-TOF and liquid chromatography MS/MS. A total of 44 proteins were associated with the ODV and 33 with the BV of AgMNPV-2D. Although 38 structural proteins were already known, we found six new proteins in the ODV and seven new proteins carried by the AgMNPV-2D BV. Eleven cellular proteins that were found on several other enveloped viruses were also identified, which are possibly carried with the virion. These findings may provide novel insights into baculovirus biology and their host interaction. Moreover, our data may be helpful in subsequent applied studies aiming to improve AgMNPV use as a biopesticide and a biotechnology tool for gene expression or delivery.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.061127-0
2014-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/980.html?itemId=/content/journal/jgv/10.1099/vir.0.061127-0&mimeType=html&fmt=ahah

References

  1. Airenne K. J., Hu Y. C., Kost T. A., Smith R. H., Kotin R. M., Ono C., Matsuura Y., Wang S., Ylä-Herttuala S.. ( 2013; ). Baculovirus: an insect-derived vector for diverse gene transfer applications. . Mol Ther 21:, 739–749. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allen G. E., Knell J. D.. ( 1977; ). A nuclear polyhedrosis virus of Anticarsia gemmatalis: I. ultrastructure, replication, and pathogenicity. . Fla Entomol 60:, 233–240. [CrossRef]
    [Google Scholar]
  3. AnandaRao R., Swaminathan S., Fernando S., Jana A. M., Khanna N.. ( 2006; ). Recombinant multiepitope protein for early detection of dengue infections. . Clin Vaccine Immunol 13:, 59–67. [CrossRef] [PubMed]
    [Google Scholar]
  4. Blissard G. W., Rohrmann G. F.. ( 1990; ). Baculovirus diversity and molecular biology. . Annu Rev Entomol 35:, 127–155. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bradford M. M.. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  6. Braunagel S. C., Summers M. D.. ( 1994; ). Autographa californica nuclear polyhedrosis virus, PDV, and ECV viral envelopes and nucleocapsids: structural proteins, antigens, lipid and fatty acid profiles. . Virology 202:, 315–328. [CrossRef] [PubMed]
    [Google Scholar]
  7. Braunagel S. C., Elton D. M., Ma H., Summers M. D.. ( 1996; ). Identification and analysis of an Autographa californica nuclear polyhedrosis virus structural protein of the occlusion-derived virus envelope: ODV-E56. . Virology 217:, 97–110. [CrossRef] [PubMed]
    [Google Scholar]
  8. Braunagel S. C., Russell W. K., Rosas-Acosta G., Russell D. H., Summers M. D.. ( 2003; ). Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus. . Proc Natl Acad Sci U S A 100:, 9797–9802. [CrossRef] [PubMed]
    [Google Scholar]
  9. Carinhas N., Robitaille A. M., Moes S., Carrondo M. J., Jenoe P., Oliveira R., Alves P. M.. ( 2011; ). Quantitative proteomics of Spodoptera frugiperda cells during growth and baculovirus infection. . PLoS ONE 6:, e26444. [CrossRef] [PubMed]
    [Google Scholar]
  10. Castro M. E., Souza M. L., Araujo S., Bilimoria S. L.. ( 1997; ). Replication of Anticarsia gemmatalis nuclear polyhedrosis virus in four lepidopteran cell lines. . J Invertebr Pathol 69:, 40–45. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chertova E., Chertov O., Coren L. V., Roser J. D., Trubey C. M., Bess J. W. Jr, Sowder R. C. II, Barsov E., Hood B. L.. & other authors ( 2006; ). Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. . J Virol 80:, 9039–9052. [CrossRef] [PubMed]
    [Google Scholar]
  12. Clem R. J.. ( 2007; ). Baculoviruses and apoptosis: a diversity of genes and responses. . Curr Drug Targets 8:, 1069–1074. [CrossRef] [PubMed]
    [Google Scholar]
  13. Coulibaly F., Chiu E., Gutmann S., Rajendran C., Haebel P. W., Ikeda K., Mori H., Ward V. K., Schulze-Briese C., Metcalf P.. ( 2009; ). The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. . Proc Natl Acad Sci U S A 106:, 22205–22210. [CrossRef] [PubMed]
    [Google Scholar]
  14. Deng F., Wang R., Fang M., Jiang Y., Xu X., Wang H., Chen X., Arif B. M., Guo L.. & other authors ( 2007; ). Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100. . J Virol 81:, 9377–9385. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dry I., Haig D. M., Inglis N. F., Imrie L., Stewart J. P., Russell G. C.. ( 2008; ). Proteomic analysis of pathogenic and attenuated alcelaphine herpesvirus 1. . J Virol 82:, 5390–5397. [CrossRef] [PubMed]
    [Google Scholar]
  16. Durantel D., Croizier L., Ayres M. D., Croizier G., Possee R. D., López-Ferber M.. ( 1998; ). The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene. . J Gen Virol 79:, 629–637.[PubMed]
    [Google Scholar]
  17. Foster L. J.. ( 2011; ). Interpretation of data underlying the link between colony collapse disorder (CCD) and an invertebrate iridescent virus. . Mol Cell Proteomics 10:, M110.006387. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gandhi K. M., Ohkawa T., Welch M. D., Volkman L. E.. ( 2012; ). Nuclear localization of actin requires AC102 in Autographa californica multiple nucleopolyhedrovirus-infected cells. . J Gen Virol 93:, 1795–1803. [CrossRef] [PubMed]
    [Google Scholar]
  19. Garavaglia M. J., Miele S. A., Iserte J. A., Belaich M. N., Ghiringhelli P. D.. ( 2012; ). The ac53, ac78, ac101, and ac103 genes are newly discovered core genes in the family Baculoviridae. . J Virol 86:, 12069–12079. [CrossRef] [PubMed]
    [Google Scholar]
  20. Garcia-Maruniak A., Maruniak J. E., Zanotto P. M., Doumbouya A. E., Liu J. C., Merritt T. M., Lanoie J. S.. ( 2004; ). Sequence analysis of the genome of the Neodiprion sertifer nucleopolyhedrovirus. . J Virol 78:, 7036–7051. [CrossRef] [PubMed]
    [Google Scholar]
  21. Guarino L. A., Mistretta T. A., Dong W.. ( 2002; ). DNA binding activity of the baculovirus late expression factor PP31. . Virus Res 90:, 187–195. [CrossRef] [PubMed]
    [Google Scholar]
  22. Hang X., Dong W., Guarino L. A.. ( 1995; ). The lef-3 gene of Autographa californica nuclear polyhedrosis virus encodes a single-stranded DNA-binding protein. . J Virol 69:, 3924–3928.[PubMed]
    [Google Scholar]
  23. Herniou E. A., Olszewski J. A., Cory J. S., O’Reilly D. R.. ( 2003; ). The genome sequence and evolution of baculoviruses. . Annu Rev Entomol 48:, 211–234. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hoover K., Grove M., Gardner M., Hughes D. P., McNeil J., Slavicek J.. ( 2011; ). A gene for an extended phenotype. . Science 333:, 1401. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hou D., Zhang L., Deng F., Fang W., Wang R., Liu X., Guo L., Rayner S., Chen X.. & other authors ( 2013; ). Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus. . J Virol 87:, 829–839. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ikeda M., Kobayashi M.. ( 1999; ). Cell-cycle perturbation in Sf9 cells infected with Autographa californica nucleopolyhedrovirus. . Virology 258:, 176–188. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ikeda M., Yamada H., Ito H., Kobayashi M.. ( 2011; ). Baculovirus IAP1 induces caspase-dependent apoptosis in insect cells. . J Gen Virol 92:, 2654–2663. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jehle J. A., Blissard G. W., Bonning B. C., Cory J. S., Herniou E. A., Rohrmann G. F., Theilmann D. A., Thiem S. M., Vlak J. M.. ( 2006; ). On the classification and nomenclature of baculoviruses: a proposal for revision. . Arch Virol 151:, 1257–1266. [CrossRef] [PubMed]
    [Google Scholar]
  29. Johannsen E., Luftig M., Chase M. R., Weicksel S., Cahir-McFarland E., Illanes D., Sarracino D., Kieff E.. ( 2004; ). Proteins of purified Epstein-Barr virus. . Proc Natl Acad Sci U S A 101:, 16286–16291. [CrossRef] [PubMed]
    [Google Scholar]
  30. Katsuma S., Mita K., Shimada T.. ( 2007; ). ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. . J Virol 81:, 13700–13709. [CrossRef] [PubMed]
    [Google Scholar]
  31. Katsuma S., Koyano Y., Kang W., Kokusho R., Kamita S. G., Shimada T.. ( 2012; ). The baculovirus uses a captured host phosphatase to induce enhanced locomotory activity in host caterpillars. . PLoS Pathog 8:, e1002644. [CrossRef] [PubMed]
    [Google Scholar]
  32. Keddie B. A., Aponte G. W., Volkman L. E.. ( 1989; ). The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. . Science 243:, 1728–1730. [CrossRef] [PubMed]
    [Google Scholar]
  33. Keller A., Nesvizhskii A. I., Kolker E., Aebersold R.. ( 2002; ). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. . Anal Chem 74:, 5383–5392. [CrossRef] [PubMed]
    [Google Scholar]
  34. King L. A., Possee R. D.. ( 1992; ). The Baculovirus Expression System – A laboratory guide. New York, NY, USA:: Chapman & Hall;. [CrossRef]
    [Google Scholar]
  35. Knudsen G. M., Chalkley R. J.. ( 2011; ). The effect of using an inappropriate protein database for proteomic data analysis. . PLoS ONE 6:, e20873. [CrossRef] [PubMed]
    [Google Scholar]
  36. Kool M., Ahrens C. H., Goldbach R. W., Rohrmann G. F., Vlak J. M.. ( 1994; ). Identification of genes involved in DNA replication of the Autographa californica baculovirus. . Proc Natl Acad Sci U S A 91:, 11212–11216. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kost T. A., Condreay J. P., Jarvis D. L.. ( 2005; ). Baculovirus as versatile vectors for protein expression in insect and mammalian cells. . Nat Biotechnol 23:, 567–575. [CrossRef] [PubMed]
    [Google Scholar]
  38. Lauzon H. A., Garcia-Maruniak A., Zanotto P. M., Clemente J. C., Herniou E. A., Lucarotti C. J., Arif B. M., Maruniak J. E.. ( 2006; ). Genomic comparison of Neodiprion sertifer and Neodiprion lecontei nucleopolyhedroviruses and identification of potential hymenopteran baculovirus-specific open reading frames. . J Gen Virol 87:, 1477–1489. [CrossRef] [PubMed]
    [Google Scholar]
  39. Liu C., Li Z., Wu W., Li L., Yuan M., Pan L., Yang K., Pang Y.. ( 2008; ). Autographa californica multiple nucleopolyhedrovirus ac53 plays a role in nucleocapsid assembly. . Virology 382:, 59–68. [CrossRef] [PubMed]
    [Google Scholar]
  40. Loret S., Guay G., Lippé R.. ( 2008; ). Comprehensive characterization of extracellular herpes simplex virus type 1 virions. . J Virol 82:, 8605–8618. [CrossRef] [PubMed]
    [Google Scholar]
  41. Maeda S.. ( 1989; ). Expression of foreign genes in insects using baculovirus vectors. . Annu Rev Entomol 34:, 351–372. [CrossRef] [PubMed]
    [Google Scholar]
  42. Maruniak J. E.. ( 1989; ). Molecular biology of Anticarsia gemmatalis baculovirus. . Mem Inst Oswaldo Cruz 84 : (Suppl. 3) 107–111. [CrossRef]
    [Google Scholar]
  43. Maruniak J. E., Garcia-Maruniak A., Souza M. L., Zanotto P. M., Moscardi F.. ( 1999; ). Physical maps and virulence of Anticarsia gemmatalis nucleopolyhedrovirus genomic variants. . Arch Virol 144:, 1991–2006. [CrossRef] [PubMed]
    [Google Scholar]
  44. McCarthy C. B., Dai X., Donly C., Theilmann D. A.. ( 2008; ). Autographa californica multiple nucleopolyhedrovirus ac142, a core gene that is essential for BV production and ODV envelopment. . Virology 372:, 325–339. [CrossRef] [PubMed]
    [Google Scholar]
  45. Miele S. A. B., Garavaglia M. J., Belaich M. N., Ghiringhelli P. D.. ( 2011; ). Baculovirus: molecular insights on their diversity and conservation. . Int J Evol Biol 2011:, 379424. [CrossRef] [PubMed]
    [Google Scholar]
  46. Mikhailov V. S., Okano K., Rohrmann G. F.. ( 2003; ). Baculovirus alkaline nuclease possesses a 5′–>3′ exonuclease activity and associates with the DNA-binding protein LEF-3. . J Virol 77:, 2436–2444. [CrossRef] [PubMed]
    [Google Scholar]
  47. Mikhailov V. S., Okano K., Rohrmann G. F.. ( 2004; ). Specificity of the endonuclease activity of the baculovirus alkaline nuclease for single-stranded DNA. . J Biol Chem 279:, 14734–14745. [CrossRef] [PubMed]
    [Google Scholar]
  48. Mishra G., Chadha P., Das R. H.. ( 2008; ). Serine/threonine kinase (pk-1) is a component of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) very late gene transcription complex and it phosphorylates a 102 kDa polypeptide of the complex. . Virus Res 137:, 147–149. [CrossRef] [PubMed]
    [Google Scholar]
  49. Monsma S. A., Oomens A. G., Blissard G. W.. ( 1996; ). The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. . J Virol 70:, 4607–4616.[PubMed]
    [Google Scholar]
  50. Moscardi F.. ( 1999; ). Assessment of the application of baculoviruses for control of Lepidoptera. . Annu Rev Entomol 44:, 257–289. [CrossRef] [PubMed]
    [Google Scholar]
  51. Moscardi F., de Souza M. L., de Castro M. E. B., Moscardi M. L. , Szewczyk B.. ( 2011; ). Baculovirus pesticides: present state and future perspectives. . In Microbes and Microbial Technology, pp. 415–445. Edited by Ahmad I., Ahmad F., Pichtel J... New York:: Springer Science;. [CrossRef]
    [Google Scholar]
  52. Nesvizhskii A. I., Keller A., Kolker E., Aebersold R.. ( 2003; ). A statistical model for identifying proteins by tandem mass spectrometry. . Anal Chem 75:, 4646–4658. [CrossRef] [PubMed]
    [Google Scholar]
  53. Ohkawa T., Volkman L. E., Welch M. D.. ( 2010; ). Actin-based motility drives baculovirus transit to the nucleus and cell surface. . J Cell Biol 190:, 187–195. [CrossRef] [PubMed]
    [Google Scholar]
  54. Oliveira J. V. C., Wolff J. L. C., Garcia-Maruniak A., Ribeiro B. M., de Castro M. E. B., de Souza M. L., Moscardi F., Maruniak J. E., Zanotto P. M. A.. ( 2006; ). Genome of the most widely used viral biopesticide: Anticarsia gemmatalis multiple nucleopolyhedrovirus. . J Gen Virol 87:, 3233–3250. [CrossRef] [PubMed]
    [Google Scholar]
  55. Oliveira J. V., de Brito A. F., Braconi C. T., de Melo Freire C. C., Iamarino A., de Andrade Zanotto P. M.. ( 2013; ). Modularity and evolutionary constraints in a baculovirus gene regulatory network. . BMC Syst Biol 7:, 87. [CrossRef] [PubMed]
    [Google Scholar]
  56. O’Reilly D. R., Miller L. K.. ( 1989; ). A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. . Science 245:, 1110–1112. [CrossRef] [PubMed]
    [Google Scholar]
  57. O’Reilly D. R., Miller L. K., Luckow V. A.. ( 1993; ). Baculovirus Expression Vectors: A Laboratory Manual. New York:: W. H. Freeman;.
    [Google Scholar]
  58. Paes Leme A. F., Sherman N. E., Smalley D. M., Sizukusa L. O., Oliveira A. K., Menezes M. C., Fox J. W., Serrano S. M.. ( 2012; ). Hemorrhagic activity of HF3, a snake venom metalloproteinase: insights from the proteomic analysis of mouse skin and blood plasma. . J Proteome Res 11:, 279–291. [CrossRef] [PubMed]
    [Google Scholar]
  59. Passarelli A. L., Miller L. K.. ( 1994; ). In vivo and in vitro analyses of recombinant baculoviruses lacking a functional cg30 gene. . J Virol 68:, 1186–1190.[PubMed]
    [Google Scholar]
  60. Pearson M. N., Groten C., Rohrmann G. F.. ( 2000; ). Identification of the Lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. . J Virol 74:, 6126–6131. [CrossRef] [PubMed]
    [Google Scholar]
  61. Perera O., Green T. B., Stevens S. M. Jr, White S., Becnel J. J.. ( 2007; ). Proteins associated with Culex nigripalpus nucleopolyhedrovirus occluded virions. . J Virol 81:, 4585–4590. [CrossRef] [PubMed]
    [Google Scholar]
  62. Prikhod’ko G. G., Wang Y., Freulich E., Prives C., Miller L. K.. ( 1999; ). Baculovirus p33 binds human p53 and enhances p53-mediated apoptosis. . J Virol 73:, 1227–1234.[PubMed]
    [Google Scholar]
  63. Radhakrishnan A., Yeo D., Brown G., Myaing M. Z., Iyer L. R., Fleck R., Tan B. H., Aitken J., Sanmun D.. & other authors ( 2010; ). Protein analysis of purified respiratory syncytial virus particles reveals an important role for heat shock protein 90 in virus particle assembly. . Mol Cell Proteomics 9:, 1829–1848. [CrossRef] [PubMed]
    [Google Scholar]
  64. Reilly L. M., Guarino L. A.. ( 1994; ). The pk-1 gene of Autographa californica multinucleocapsid nuclear polyhedrosis virus encodes a protein kinase. . J Gen Virol 75:, 2999–3006. [CrossRef] [PubMed]
    [Google Scholar]
  65. Resch W., Hixson K. K., Moore R. J., Lipton M. S., Moss B.. ( 2007; ). Protein composition of the vaccinia virus mature virion. . Virology 358:, 233–247. [CrossRef] [PubMed]
    [Google Scholar]
  66. Ribeiro B. M., Gatti C. D., Costa M. H., Moscardi F., Maruniak J. E., Possee R. D., Zanotto P. M.. ( 2001; ). Construction of a recombinant Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV-2D) harbouring the beta-galactosidase gene. . Arch Virol 146:, 1355–1367. [CrossRef] [PubMed]
    [Google Scholar]
  67. Russell R. L., Rohrmann G. F.. ( 1993; ). A 25-kDa protein is associated with the envelopes of occluded baculovirus virions. . Virology 195:, 532–540. [CrossRef] [PubMed]
    [Google Scholar]
  68. Schultz K. L., Friesen P. D.. ( 2009; ). Baculovirus DNA replication-specific expression factors trigger apoptosis and shutoff of host protein synthesis during infection. . J Virol 83:, 11123–11132. [CrossRef] [PubMed]
    [Google Scholar]
  69. Shaw M. L., Stone K. L., Colangelo C. M., Gulcicek E. E., Palese P.. ( 2008; ). Cellular proteins in influenza virus particles. . PLoS Pathog 4:, e1000085. [CrossRef] [PubMed]
    [Google Scholar]
  70. Sieburth P., Maruniak J. E.. ( 1988; ). Growth characteristics of a continuous cell line from the velvetbean caterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). . In Vitro Cell Dev Biol Plant 24:, 195–198. [CrossRef]
    [Google Scholar]
  71. Slack J., Arif B. M.. ( 2007; ). The baculoviruses occlusion-derived virus: virion structure and function. . Adv Virus Res 69:, 99–165.[PubMed]
    [Google Scholar]
  72. Smith G. E., Summers M. D., Fraser M. J.. ( 1983; ). Production of human beta interferon in insect cells infected with a baculovirus expression vector. . Mol Cell Biol 3:, 2156–2165.[PubMed]
    [Google Scholar]
  73. Steen H., Mann M.. ( 2004; ). The ABC’s (and XYZ’s) of peptide sequencing. . Nat Rev Mol Cell Biol 5:, 699–711. [CrossRef] [PubMed]
    [Google Scholar]
  74. Szewczyk B., Hoyos-Carvajal L., Paluszek M., Skrzecz I., Lobo de Souza M.. ( 2006; ). Baculoviruses– re-emerging biopesticides. . Biotechnol Adv 24:, 143–160. [CrossRef] [PubMed]
    [Google Scholar]
  75. Takagi T., Taylor G. S., Kusakabe T., Charbonneau H., Buratowski S.. ( 1998; ). A protein tyrosine phosphatase-like protein from baculovirus has RNA 5′-triphosphatase and diphosphatase activities. . Proc Natl Acad Sci U S A 95:, 9808–9812. [CrossRef] [PubMed]
    [Google Scholar]
  76. Tanada Y., Kaya H. K.. ( 1993; ). DNA-Viral infections: Baculoviridae. . In Insect Pathology, pp. 171–244. Edited by Tanada Y., Kaya H. K... San Diego:: Academic Press;. [CrossRef]
    [Google Scholar]
  77. Varnum S. M., Streblow D. N., Monroe M. E., Smith P., Auberry K. J., Pasa-Tolic L., Wang D., Camp D. G. II, Rodland K.. & other authors ( 2004; ). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. . J Virol 78:, 10960–10966. [CrossRef] [PubMed]
    [Google Scholar]
  78. Wang R., Deng F., Hou D., Zhao Y., Guo L., Wang H., Hu Z.. ( 2010; ). Proteomics of the Autographa californica nucleopolyhedrovirus budded virions. . J Virol 84:, 7233–7242. [CrossRef] [PubMed]
    [Google Scholar]
  79. Wang X. F., Zhang B. Q., Xu H. J., Cui Y. J., Xu Y. P., Zhang M. J., Han Y. S., Lee Y. S., Bao Y. Y., Zhang C. X.. ( 2011; ). ODV-associated proteins of the Pieris rapae granulovirus. . J Proteome Res 10:, 2817–2827. [CrossRef] [PubMed]
    [Google Scholar]
  80. Wang Y., Wu W., Li Z., Yuan M., Feng G., Yu Q., Yang K., Pang Y.. ( 2007; ). ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus. . Virology 367:, 71–81. [CrossRef] [PubMed]
    [Google Scholar]
  81. Whitt M. A., Manning J. S.. ( 1988; ). A phosphorylated 34-kDa protein and a subpopulation of polyhedrin are thiol linked to the carbohydrate layer surrounding a baculovirus occlusion body. . Virology 163:, 33–42. [CrossRef] [PubMed]
    [Google Scholar]
  82. Wolff J. L. C., Valicente F. H., Martins R., Oliveira J. V. C., Zanotto P. M. A.. ( 2008; ). Analysis of the genome of Spodoptera frugiperda nucleopolyhedrovirus (SfMNPV-19) and of the high genomic heterogeneity in group II nucleopolyhedroviruses. . J Gen Virol 89:, 1202–1211. [CrossRef] [PubMed]
    [Google Scholar]
  83. Wu W., Passarelli A. L.. ( 2010; ). Autographa californica multiple nucleopolyhedrovirus Ac92 (ORF92, P33) is required for budded virus production and multiply enveloped occlusion-derived virus formation. . J Virol 84:, 12351–12361. [CrossRef] [PubMed]
    [Google Scholar]
  84. Xu F., Ince I. A., Boeren S., Vlak J. M., van Oers M. M.. ( 2011; ). Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus. . Virus Res 158:, 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  85. Yuan M., Wu W., Liu C., Wang Y., Hu Z., Yang K., Pang Y.. ( 2008; ). A highly conserved baculovirus gene p48 (ac103) is essential for BV production and ODV envelopment. . Virology 379:, 87–96. [CrossRef] [PubMed]
    [Google Scholar]
  86. Zanotto P. M. A., Sampaio M. J. A., Johnson D. W., Rocha T. L., Maruniak J. E.. ( 1992; ). The Anticarsia gemmatalis nuclear polyhedrosis virus polyhedrin gene region: sequence analysis, gene product and structural comparisons. . J Gen Virol 73:, 1049–1056. [CrossRef] [PubMed]
    [Google Scholar]
  87. Zanotto P. M. A., Kessing B. D., Maruniak J. E.. ( 1993; ). Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. . J Invertebr Pathol 62:, 147–164. [CrossRef] [PubMed]
    [Google Scholar]
  88. Zhu F. X., Chong J. M., Wu L., Yuan Y.. ( 2005; ). Virion proteins of Kaposi’s sarcoma-associated herpesvirus. . J Virol 79:, 800–811. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.061127-0
Loading
/content/journal/jgv/10.1099/vir.0.061127-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error