1887

Abstract

Phylogenomic evidence suggested that recombination is an important evolutionary force for potyviruses, one of the larger families of plant RNA viruses. However, mixed-genotype potyvirus infections are marked by low levels of cellular coinfection, precluding template switching and recombination events between virus genotypes during genomic RNA replication. To reconcile these conflicting observations, we evaluated the recombination rate ( ) of (TEV; genus , family ) by coinfecting plants with pairs of genotypes marked with engineered restriction sites as neutral markers. The recombination rate was then estimated using two different approaches: (i) a classical approach that assumed recombination between marked genotypes can occur in the whole virus population, rendering an estimate of  = 7.762×10 recombination events per nucleotide site per generation, and (ii) an alternative method that assumed recombination between marked genotypes can occur only in coinfected cells, rendering a much higher estimate of  = 3.427×10 recombination events per nucleotide site per generation. This last estimate is similar to the TEV mutation rate, suggesting that recombination should be at least as important as point mutation in creating variability. Finally, we compared our mutation and recombination rate estimates to those reported for animal RNA viruses. Our analysis suggested that high recombination rates may be an unavoidable consequence of selection for fast replication at the cost of low fidelity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060822-0
2014-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/3/724.html?itemId=/content/journal/jgv/10.1099/vir.0.060822-0&mimeType=html&fmt=ahah

References

  1. Anderson J. A., Bowman E. H., Hu W. S.. ( 1998; ). Retroviral recombination rates do not increase linearly with marker distance and are limited by the size of the recombining subpopulation. . J Virol 72:, 1195–1202.[PubMed]
    [Google Scholar]
  2. Aranda M. A., Fraile A., Dopazo J., Malpica J. M., García-Arenal F.. ( 1997; ). Contribution of mutation and RNA recombination to the evolution of a plant pathogenic RNA. . J Mol Evol 44:, 81–88. [CrossRef] [PubMed]
    [Google Scholar]
  3. Baric R. S., Fu K., Schaad M. C., Stohlman S. A.. ( 1990; ). Establishing a genetic recombination map for murine coronavirus strain A59 complementation groups. . Virology 177:, 646–656. [CrossRef] [PubMed]
    [Google Scholar]
  4. Batorsky R., Kearney M. F., Palmer S. E., Maldarelli F., Rouzine I. M., Coffin J. M.. ( 2011; ). Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection. . Proc Natl Acad Sci U S A 108:, 5661–5666. [CrossRef] [PubMed]
    [Google Scholar]
  5. Belshaw R., Gardner A., Rambaut A., Pybus O. G.. ( 2008; ). Pacing a small cage: mutation and RNA viruses. . Trends Ecol Evol 23:, 188–193. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bonnet J., Fraile A., Sacristán S., Malpica J. M., García-Arenal F.. ( 2005; ). Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. . Virology 332:, 359–368. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bruyere A., Wantroba M., Flasinski S., Dzianott A., Bujarski J. J.. ( 2000; ). Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. . J Virol 74:, 4214–4219. [CrossRef] [PubMed]
    [Google Scholar]
  8. Carrasco P., Daròs J. A., Agudelo-Romero P., Elena S. F.. ( 2007; ). A real-time RT-PCR assay for quantifying the fitness of tobacco etch virus in competition experiments. . J Virol Methods 139:, 181–188. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chare E. R., Holmes E. C.. ( 2006; ). A phylogenetic survey of recombination frequency in plant RNA viruses. . Arch Virol 151:, 933–946. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chen Y. K., Goldbach R., Prins M.. ( 2002; ). Inter- and intramolecular recombinations in the cucumber mosaic virus genome related to adaptation to alstroemeria. . J Virol 76:, 4119–4124. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chung B. Y. W., Miller W. A., Atkins J. F., Firth A. E.. ( 2008; ). An overlapping essential gene in the Potyviridae . . Proc Natl Acad Sci U S A 105:, 5897–5902. [CrossRef] [PubMed]
    [Google Scholar]
  12. Codoñer F. M., Elena S. F.. ( 2008; ). The promiscuous evolutionary history of the family Bromoviridae . . J Gen Virol 89:, 1739–1747. [CrossRef] [PubMed]
    [Google Scholar]
  13. de la Iglesia F., Elena S. F.. ( 2007; ). Fitness declines in Tobacco etch virus upon serial bottleneck transfers. . J Virol 81:, 4941–4947. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dietrich C., Maiss E.. ( 2003; ). Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. . J Gen Virol 84:, 2871–2876. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dolja V. V., McBride H. J., Carrington J. C.. ( 1992; ). Tagging of plant potyvirus replication and movement by insertion of β-glucuronidase into the viral polyprotein. . Proc Natl Acad Sci U S A 89:, 10208–10212. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dolja V. V., Herndon K. L., Pirone T. P., Carrington J. C.. ( 1993; ). Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene. . J Virol 67:, 5968–5975.[PubMed]
    [Google Scholar]
  17. Duggal R., Cuconati A., Gromeier M., Wimmer E.. ( 1997; ). Genetic recombination of poliovirus in a cell-free system. . Proc Natl Acad Sci U S A 94:, 13786–13791. [CrossRef] [PubMed]
    [Google Scholar]
  18. Elena S. F., Sanjuán R.. ( 2005; ). Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. . J Virol 79:, 11555–11558. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fernández-Cuartero B., Burgyán J., Aranda M. A., Salánki K., Moriones E., García-Arenal F.. ( 1994; ). Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. . Virology 203:, 373–377. [CrossRef] [PubMed]
    [Google Scholar]
  20. Fisher R. A.. ( 1930; ). The Genetical Theory of Natural Selection. Oxford:: Oxford University Press;.
    [Google Scholar]
  21. Froissart R., Roze D., Uzest M., Galibert L., Blanc S., Michalakis Y.. ( 2005; ). Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. . PLoS Biol 3:, e89. [CrossRef] [PubMed]
    [Google Scholar]
  22. González-Candelas F., López-Labrador F. X., Bracho M. A.. ( 2011; ). Recombination in hepatitis C virus. . Viruses 3:, 2006–2024. [CrossRef] [PubMed]
    [Google Scholar]
  23. González-Jara P., Fraile A., Cantó T., García-Arenal F.. ( 2009; ). The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. . J Virol 83:, 7487–7494. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gutiérrez S., Yvon M., Thébaud G., Monsion B., Michalakis Y., Blanc S.. ( 2010; ). Dynamics of the multiplicity of cellular infection in a plant virus. . PLoS Pathog 6:, e1001113. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hu W. S., Temin H. M.. ( 1990; ). Genetic consequences of packaging two RNA genomes in one retroviral particle: pseudodiploidy and high rate of genetic recombination. . Proc Natl Acad Sci U S A 87:, 1556–1560. [CrossRef] [PubMed]
    [Google Scholar]
  26. Jarvis T. C., Kirkegaard K.. ( 1992; ). Poliovirus RNA recombination: mechanistic studies in the absence of selection. . EMBO J 11:, 3135–3145.[PubMed]
    [Google Scholar]
  27. Jetzt A. E., Yu H., Klarmann G. J., Ron Y., Preston B. D., Dougherty J. P.. ( 2000; ). High rate of recombination throughout the human immunodeficiency virus type 1 genome. . J Virol 74:, 1234–1240. [CrossRef] [PubMed]
    [Google Scholar]
  28. King A. M.. ( 1988; ). Preferred sites of recombination in poliovirus RNA: an analysis of 40 intertypic cross-over sequences. . Nucleic Acids Res 16:, 11705–11723. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kirkegaard K., Baltimore D.. ( 1986; ). The mechanism of RNA recombination in poliovirus. . Cell 47:, 433–443. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kosambi D. D.. ( 1943; ). The estimation of map distance from recombination values. . Ann Eugen 12:, 172–175. [CrossRef]
    [Google Scholar]
  31. Lahr D. J. G., Katz L. A.. ( 2009; ). Reducing the impact of PCR-mediated recombination in molecular evolution and environmental studies using a new-generation high-fidelity DNA polymerase. . Biotechniques 47:, 857–866.[PubMed]
    [Google Scholar]
  32. Lalić J., Cuevas J. M., Elena S. F.. ( 2011; ). Effect of host species on the distribution of mutational fitness effects for an RNA virus. . PLoS Genet 7:, e1002378. [CrossRef] [PubMed]
    [Google Scholar]
  33. Levy D. N., Aldrovandi G. M., Kutsch O., Shaw G. M.. ( 2004; ). Dynamics of HIV-1 recombination in its natural target cells. . Proc Natl Acad Sci U S A 101:, 4204–4209. [CrossRef] [PubMed]
    [Google Scholar]
  34. Malpica J. M., Fraile A., Moreno I., Obies C. I., Drake J. W., García-Arenal F.. ( 2002; ). The rate and character of spontaneous mutation in an RNA virus. . Genetics 162:, 1505–1511.[PubMed]
    [Google Scholar]
  35. Martin D. P., van der Walt E., Posada D., Rybicki E. P.. ( 2005; ). The evolutionary value of recombination is constrained by genome modularity. . PLoS Genet 1:, e51. [CrossRef] [PubMed]
    [Google Scholar]
  36. Martín S., Sambade A., Rubio L., Vives M. C., Moya P., Guerri J., Elena S. F., Moreno P.. ( 2009; ). Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. . J Gen Virol 90:, 1527–1538. [CrossRef] [PubMed]
    [Google Scholar]
  37. Martínez F., Sardanyés J., Elena S. F., Daròs J. A.. ( 2011; ). Dynamics of a plant RNA virus intracellular accumulation: stamping machine vs. geometric replication. . Genetics 188:, 637–646. [CrossRef] [PubMed]
    [Google Scholar]
  38. Meyerhans A., Vartanian J. P., Wain-Hobson S.. ( 1990; ). DNA recombination during PCR. . Nucleic Acids Res 18:, 1687–1691. [CrossRef] [PubMed]
    [Google Scholar]
  39. Muller H. J.. ( 1932; ). Some genetic aspects of sex. . Am Nat 66:, 118–138. [CrossRef]
    [Google Scholar]
  40. Muller H. J.. ( 1964; ). The relation of recombination to mutational advance. . Mutat Res 1:, 2–9. [CrossRef] [PubMed]
    [Google Scholar]
  41. Nagy P. D., Simon A. E.. ( 1997; ). New insights into the mechanisms of RNA recombination. . Virology 235:, 1–9. [CrossRef] [PubMed]
    [Google Scholar]
  42. Neher R. A., Leitner T.. ( 2010; ). Recombination rate and selection strength in HIV intra-patient evolution. . PLOS Comput Biol 6:, e1000660. [CrossRef] [PubMed]
    [Google Scholar]
  43. Ohshima K., Tomitaka Y., Wood J. T., Minematsu Y., Kajiyama H., Tomimura K., Gibbs A. J.. ( 2007; ). Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. . J Gen Virol 88:, 298–315. [CrossRef] [PubMed]
    [Google Scholar]
  44. Olsthoorn R. C. L., Bruyere A., Dzianott A., Bujarski J. J.. ( 2002; ). RNA recombination in brome mosaic virus: effects of strand-specific stem-loop inserts. . J Virol 76:, 12654–12662. [CrossRef] [PubMed]
    [Google Scholar]
  45. Pita J. S., Roossinck M. J.. ( 2013; ). Fixation of emerging interviral recombinants in Cucumber mosaic virus populations. . J Virol 87:, 1264–1269. [CrossRef] [PubMed]
    [Google Scholar]
  46. Reiter J., Pérez-Vilaró G., Scheller N., Mina L. B., Díez J., Meyerhans A.. ( 2011; ). Hepatitis C virus RNA recombination in cell culture. . J Hepatol 55:, 777–783. [CrossRef] [PubMed]
    [Google Scholar]
  47. Revers F., Le Gall O., Candresse T., Le Romancer M., Dunez J.. ( 1996; ). Frequent occurrence of recombinant potyvirus isolates. . J Gen Virol 77:, 1953–1965. [CrossRef] [PubMed]
    [Google Scholar]
  48. Riechmann J. L., Laín S., García J. A.. ( 1992; ). Highlights and prospects of potyvirus molecular biology. . J Gen Virol 73:, 1–16. [CrossRef] [PubMed]
    [Google Scholar]
  49. Sanjuán R., Agudelo-Romero P., Elena S. F.. ( 2009; ). Upper-limit mutation rate estimation for a plant RNA virus. . Biol Lett 5:, 394–396. [CrossRef] [PubMed]
    [Google Scholar]
  50. Sanjuán R., Nebot M. R., Chirico N., Mansky L. M., Belshaw R.. ( 2010; ). Viral mutation rates. . J Virol 84:, 9733–9748. [CrossRef] [PubMed]
    [Google Scholar]
  51. Simon-Loriere E., Holmes E. C.. ( 2011; ). Why do RNA viruses recombine. ? Nat Rev Microbiol 9:, 617–626. [CrossRef] [PubMed]
    [Google Scholar]
  52. Sztuba-Solińska J., Urbanowicz A., Figlerowicz M., Bujarski J. J.. ( 2011; ). RNA-RNA recombination in plant virus replication and evolution. . Annu Rev Phytopathol 49:, 415–443. [CrossRef] [PubMed]
    [Google Scholar]
  53. Tromas N., Elena S. F.. ( 2010; ). The rate and spectrum of spontaneous mutations in a plant RNA virus. . Genetics 185:, 983–989. [CrossRef] [PubMed]
    [Google Scholar]
  54. Tromas N., Zwart M. P., Lafforgue G., Elena S. F.. ( 2014; ). Within-host spatiotemporal dynamics of plant virus infection at the cellular level. . PLoS Genet doi: [CrossRef].
    [Google Scholar]
  55. Urbanowicz A., Alejska M., Formanowicz P., Błażewicz J., Figlerowicz M., Bujarski J. J.. ( 2005; ). Homologous crossovers among molecules of brome mosaic bromovirus RNA1 or RNA2 segments in vivo. . J Virol 79:, 5732–5742. [CrossRef] [PubMed]
    [Google Scholar]
  56. van der Walt E., Rybicki E. P., Varsani A., Polston J. E., Billharz R., Donaldson L., Monjane A. L., Martin D. P.. ( 2009; ). Rapid host adaptation by extensive recombination. . J Gen Virol 90:, 734–746. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zhuang J., Mukherjee S., Ron Y., Dougherty J. P.. ( 2006; ). High rate of genetic recombination in murine leukemia virus: implications for influencing proviral ploidy. . J Virol 80:, 6706–6711. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zwart M. P., Daròs J. A., Elena S. F.. ( 2011; ). One is enough: in vivo effective population size is dose-dependent for a plant RNA virus. . PLoS Pathog 7:, e1002122. [CrossRef] [PubMed]
    [Google Scholar]
  59. Zwart M. P., Tromas N., Elena S. F.. ( 2013; ). Model-selection-based approach for calculating cellular multiplicity of infection during virus colonization of multi-cellular hosts. . PLoS ONE 8:, e64657. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060822-0
Loading
/content/journal/jgv/10.1099/vir.0.060822-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error