1887

Abstract

In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism, as efficient binding of henipavirus G proteins to cellular ephrin receptors and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analysed the ability of the GH-M74a G and F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for limited syncytium formation in a bat cell line derived from , HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. Whilst GH-M74a G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon co-expression with heterotypic NiV F protein, GH-M74a F protein did not cause evident fusion in the presence of heterotypic NiV G protein. Pulse–chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by impaired trafficking leading to less efficient proteolytic activation and surface expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060632-0
2014-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/3/539.html?itemId=/content/journal/jgv/10.1099/vir.0.060632-0&mimeType=html&fmt=ahah

References

  1. Aguilar H. C., Aspericueta V., Robinson L. R., Aanensen K. E., Lee B.. ( 2010; ). A quantitative and kinetic fusion protein-triggering assay can discern distinct steps in the nipah virus membrane fusion cascade. . J Virol 84:, 8033–8041. [CrossRef] [PubMed]
    [Google Scholar]
  2. Biesold S. E., Ritz D., Gloza-Rausch F., Wollny R., Drexler J. F., Corman V. M., Kalko E. K., Oppong S., Drosten C., Müller M. A.. ( 2011; ). Type I interferon reaction to viral infection in interferon-competent, immortalized cell lines from the African fruit bat Eidolon helvum . . PLoS ONE 6:, e28131. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bonaparte M. I., Dimitrov A. S., Bossart K. N., Crameri G., Mungall B. A., Bishop K. A., Choudhry V., Dimitrov D. S., Wang L. F.. & other authors ( 2005; ). Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. . Proc Natl Acad Sci U S A 102:, 10652–10657. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bossart K. N., Wang L. F., Flora M. N., Chua K. B., Lam S. K., Eaton B. T., Broder C. C.. ( 2002; ). Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. . J Virol 76:, 11186–11198. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chong H. T., Abdullah S., Chong T. T.. ( 2009; ). Nipah virus and bats. . Neurology Asia 14:, 73–76 [CrossRef]
    [Google Scholar]
  6. Chua K. B., Goh K. J., Wong K. T., Kamarulzaman A., Tan P. S., Ksiazek T. G., Zaki S. R., Paul G., Lam S. K., Tan C. T.. ( 1999; ). Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. . Lancet 354:, 1257–1259. [CrossRef] [PubMed]
    [Google Scholar]
  7. Diederich S., Moll M., Klenk H. D., Maisner A.. ( 2005; ). The Nipah virus fusion protein is cleaved within the endosomal compartment. . J Biol Chem 280:, 29899–29903. [CrossRef] [PubMed]
    [Google Scholar]
  8. Diederich S., Thiel L., Maisner A.. ( 2008; ). Role of endocytosis and cathepsin-mediated activation in Nipah virus entry. . Virology 375:, 391–400. [CrossRef] [PubMed]
    [Google Scholar]
  9. Diederich S., Sauerhering L., Weis M., Altmeppen H., Schaschke N., Reinheckel T., Erbar S., Maisner A.. ( 2012; ). Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. . J Virol 86:, 3736–3745. [CrossRef] [PubMed]
    [Google Scholar]
  10. Drexler J. F., Corman V. M., Gloza-Rausch F., Seebens A., Annan A., Ipsen A., Kruppa T., Müller M. A., Kalko E. K.. & other authors ( 2009; ). Henipavirus RNA in African bats. . PLoS ONE 4:, e6367. [CrossRef] [PubMed]
    [Google Scholar]
  11. Drexler J. F., Corman V. M., Müller M. A., Maganga G. D., Vallo P., Binger T., Gloza-Rausch F., Rasche A., Yordanov S.. & other authors ( 2012; ). Bats host major mammalian paramyxoviruses. . Nat Commun 3:, 796. [CrossRef] [PubMed]
    [Google Scholar]
  12. Escaffre O., Borisevich V., Rockx B.. ( 2013; ). Pathogenesis of Hendra and Nipah virus infection in humans. . J Infect Dev Ctries 7:, 308–311. [CrossRef] [PubMed]
    [Google Scholar]
  13. Halpin K., Hyatt A. D., Fogarty R., Middleton D., Bingham J., Epstein J. H., Rahman S. A., Hughes T., Smith C.. & other authors ( 2011; ). Pteropid bats are confirmed as the reservoir hosts of henipaviruses: a comprehensive experimental study of virus transmission. . Am J Trop Med Hyg 85:, 946–951. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hayman D. T., Wang L. F., Barr J., Baker K. S., Suu-Ire R., Broder C. C., Cunningham A. A., Wood J. L.. ( 2011; ). Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. . PLoS ONE 6:, e25256. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hoffmann M., Müller M. A., Drexler J. F., Glende J., Erdt M., Gützkow T., Losemann C., Binger T., Deng H.. & other authors ( 2013; ). Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. . PLoS ONE 8:, e72942. [CrossRef] [PubMed]
    [Google Scholar]
  16. Khan M. S., Hossain J., Gurley E. S., Nahar N., Sultana R., Luby S. P.. ( 2010; ). Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. . EcoHealth 7:, 517–525. [CrossRef] [PubMed]
    [Google Scholar]
  17. Krüger N., Hoffmann M., Weis M., Drexler J. F., Müller M. A., Winter C., Corman V. M., Gützkow T., Drosten C.. & other authors ( 2013; ). Surface glycoproteins of an African henipavirus induce syncytium formation in a cell line derived from an African fruit bat, Hypsignathus monstrosus . . J Virol 87:, 13889–13891. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lamp B., Dietzel E., Kolesnikova L., Sauerhering L., Erbar S., Weingartl H., Maisner A.. ( 2013; ). Nipah virus entry and egress from polarized epithelial cells. . J Virol 87:, 3143–3154. [CrossRef] [PubMed]
    [Google Scholar]
  19. Luby S. P., Gurley E. S., Hossain M. J.. ( 2009a; ). Transmission of human infection with Nipah virus. . Clin Infect Dis 49:, 1743–1748. [CrossRef] [PubMed]
    [Google Scholar]
  20. Luby S. P., Hossain M. J., Gurley E. S., Ahmed B. N., Banu S., Khan S. U., Homaira N., Rota P. A., Rollin P. E.. & other authors ( 2009b; ). Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001–2007. . Emerg Infect Dis 15:, 1229–1235. [CrossRef] [PubMed]
    [Google Scholar]
  21. Maisner A., Neufeld J., Weingartl H.. ( 2009; ). Organ- and endotheliotropism of Nipah virus infections in vivo and in vitro. . Thromb Haemost 102:, 1014–1023.[PubMed]
    [Google Scholar]
  22. Marsh G. A., Todd S., Foord A., Hansson E., Davies K., Wright L., Morrissy C., Halpin K., Middleton D.. & other authors ( 2010; ). Genome sequence conservation of Hendra virus isolates during spillover to horses, Australia. . Emerg Infect Dis 16:, 1767–1769. [CrossRef] [PubMed]
    [Google Scholar]
  23. Marsh G. A., de Jong C., Barr J. A., Tachedjian M., Smith C., Middleton D., Yu M., Todd S., Foord A. J.. & other authors ( 2012; ). Cedar virus: a novel henipavirus isolated from Australian bats. . PLoS Pathog 8:, e1002836. [CrossRef] [PubMed]
    [Google Scholar]
  24. Moll M., Diederich S., Klenk H. D., Czub M., Maisner A.. ( 2004; ). Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. . J Virol 78:, 9705–9712. [CrossRef] [PubMed]
    [Google Scholar]
  25. Negrete O. A., Levroney E. L., Aguilar H. C., Bertolotti-Ciarlet A., Nazarian R., Tajyar S., Lee B.. ( 2005; ). EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. . Nature 436:, 401–405.[PubMed]
    [Google Scholar]
  26. Negrete O. A., Wolf M. C., Aguilar H. C., Enterlein S., Wang W., Mühlberger E., Su S. V., Bertolotti-Ciarlet A., Flick R., Lee B.. ( 2006; ). Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. . PLoS Pathog 2:, e7. [CrossRef] [PubMed]
    [Google Scholar]
  27. Niwa H., Yamamura K., Miyazaki J.. ( 1991; ). Efficient selection for high-expression transfectants with a novel eukaryotic vector. . Gene 108:, 193–199. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pager C. T., Craft W. W. Jr, Patch J., Dutch R. E.. ( 2006; ). A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. . Virology 346:, 251–257. [CrossRef] [PubMed]
    [Google Scholar]
  29. Popa A., Pager C. T., Dutch R. E.. ( 2011; ). C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein. . Biochemistry 50:, 945–952. [CrossRef] [PubMed]
    [Google Scholar]
  30. Popa A., Carter J. R., Smith S. E., Hellman L., Fried M. G., Dutch R. E.. ( 2012; ). Residues in the Hendra virus fusion protein transmembrane domain are critical for endocytic recycling. . J Virol 86:, 3014–3026. [CrossRef] [PubMed]
    [Google Scholar]
  31. Smith E. C., Popa A., Chang A., Masante C., Dutch R. E.. ( 2009; ). Viral entry mechanisms: the increasing diversity of paramyxovirus entry. . FEBS J 276:, 7217–7227. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thiel L., Diederich S., Erbar S., Pfaff D., Augustin H. G., Maisner A.. ( 2008; ). Ephrin-B2 expression critically influences Nipah virus infection independent of its cytoplasmic tail. . Virol J 5:, 163. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wang L. F., Yu M., Hansson E., Pritchard L. I., Shiell B., Michalski W. P., Eaton B. T.. ( 2000; ). The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. . J Virol 74:, 9972–9979. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060632-0
Loading
/content/journal/jgv/10.1099/vir.0.060632-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error