1887

Abstract

African horse sickness virus (AHSV) is an arbovirus capable of successfully replicating in both its mammalian host and insect vector. Where mammalian cells show a severe cytopathic effect (CPE) following AHSV infection, insect cells display no CPE. These differences in cell death could be linked to the method of viral release, i.e. lytic or non-lytic, that predominates in a specific cell type. Active release of AHSV, or any related orbivirus, has, however, not yet been documented from insect cells. We applied an integrated microscopy approach to compare the nanomechanical and morphological response of mammalian and insect cells to AHSV infection. Atomic force microscopy revealed plasma membrane destabilization, integrity loss and structural deformation of the entire surface of infected mammalian cells. Infected insect cells, in contrast, showed no morphological differences from mock-infected cells other than an increased incidence of circular cavities present on the cell surface. Transmission electron microscopy imaging identified a novel large vesicle-like compartment within infected insect cells, not present in mammalian cells, containing viral proteins and virus particles. Extracellular clusters of aggregated virus particles were visualized adjacent to infected insect cells with intact plasma membranes. We propose that foreign material is accumulated within these vesicles and that their subsequent fusion with the cell membrane releases entrapped viruses, thereby facilitating a non-lytic virus release mechanism different from the budding previously observed in mammalian cells. This insect cell-specific defence mechanism contributes to the lack of cell damage observed in AHSV-infected insect cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.060400-0
2014-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/3/642.html?itemId=/content/journal/jgv/10.1099/vir.0.060400-0&mimeType=html&fmt=ahah

References

  1. Attoui H., Mendez-Lopez M. R., Rao S., Hurtado-Alendes A., Lizaraso-Caparo F., Jaafar F. M., Samuel A. R., Belhouchet M., Pritchard L. I.. & other authors ( 2009; ). Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia. . Virology 394:, 298–310. [CrossRef] [PubMed]
    [Google Scholar]
  2. Babst M.. ( 2005; ). A protein’s final ESCRT. . Traffic 6:, 2–9. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beaton A. R., Rodriguez J., Reddy Y. K., Roy P.. ( 2002; ). The membrane trafficking protein calpactin forms a complex with bluetongue virus protein NS3 and mediates virus release. . Proc Natl Acad Sci U S A 99:, 13154–13159. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhattacharya B., Roy P.. ( 2008; ). Bluetongue virus outer capsid protein VP5 interacts with membrane lipid rafts via a SNARE domain. . J Virol 82:, 10600–10612. [CrossRef] [PubMed]
    [Google Scholar]
  5. Breese S. S. Jr, Ozawa Y.. ( 1969; ). Intracellular inclusions resulting from infection with African horsesickness virus. . J Virol 4:, 109–112.[PubMed]
    [Google Scholar]
  6. Breese S. S. Jr, Ozawa Y., Dardiri A. H.. ( 1969; ). Electron microscopic characterization of African horse-sickness virus. . J Am Vet Med Assoc 155:, 391–400.[PubMed]
    [Google Scholar]
  7. Brewer A. W., MacLachlan N. J.. ( 1994; ). The pathogenesis of bluetongue virus infection of bovine blood cells in vitro: ultrastructural characterization. . Arch Virol 136:, 287–298. [CrossRef] [PubMed]
    [Google Scholar]
  8. Burroughs J. N., O’Hara R. S., Smale C. J., Hamblin C., Walton A., Armstrong R., Mertens P. P.. ( 1994; ). Purification and properties of virus particles, infectious subviral particles, cores and VP7 crystals of African horsesickness virus serotype 9. . J Gen Virol 75:, 1849–1857. [CrossRef] [PubMed]
    [Google Scholar]
  9. Butt H. J., Wolff E. K., Gould S. A., Dixon Northern B., Peterson C. M., Hansma P. K.. ( 1990; ). Imaging cells with the atomic force microscope. . J Struct Biol 105:, 54–61. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cai X., Xing X., Cai J., Chen Q., Wu S., Huang F.. ( 2010; ). Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: An AFM study. . Micron 41:, 257–262. [CrossRef] [PubMed]
    [Google Scholar]
  11. Carrasco L., Sánchez C., Gómez-Villamandos J. C., Laviada M. D., Bautista M. J., Martínez-Torrecuadrada J., Sánchez-Vizcaíno J. M., Sierra M. A.. ( 1999; ). The role of pulmonary intravascular macrophages in the pathogenesis of African horse sickness. . J Comp Pathol 121:, 25–38. [CrossRef] [PubMed]
    [Google Scholar]
  12. Celma C. C., Roy P.. ( 2011; ). Interaction of calpactin light chain (S100A10/p11) and a viral NS protein is essential for intracellular trafficking of nonenveloped bluetongue virus. . J Virol 85:, 4783–4791. [CrossRef] [PubMed]
    [Google Scholar]
  13. Coetzer J. A. W., Guthrie A. J.. ( 2004; ). African Horse sickness. . In Infectious Diseases of Livestock, vol. 2, pp. 1231–1246. Edited by Coetzer J. A. W., Tustin R. C... Cape Town:: Oxford University Press Southern Africa;.
    [Google Scholar]
  14. Deretic V., Levine B.. ( 2009; ). Autophagy, immunity, and microbial adaptations. . Cell Host Microbe 5:, 527–549. [CrossRef] [PubMed]
    [Google Scholar]
  15. Eaton B. T., Hyatt A. D., Brookes S. M.. ( 1990; ). The replication of bluetongue virus. . Curr Top Microbiol Immunol 162:, 89–118.[PubMed]
    [Google Scholar]
  16. Galluzzi L., Vitale I., Abrams J. M., Alnemri E. S., Baehrecke E. H., Blagosklonny M. V., Dawson T. M., Dawson V. L., El-Deiry W. S.. & other authors ( 2012; ). Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. . Cell Death Differ 19:, 107–120. [CrossRef] [PubMed]
    [Google Scholar]
  17. Gómez-Villamandos J. C., Sánchez C., Carrasco L., Laviada M. M., Bautista M. J., Martínez-Torrecuadrada J., Sánchez-Vizcaíno J. M., Sierra M. A.. ( 1999; ). Pathogenesis of African horse sickness: ultrastructural study of the capillaries in experimental infection. . J Comp Pathol 121:, 101–116. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gould E. A., Higgs S.. ( 2009; ). Impact of climate change and other factors on emerging arbovirus diseases. . Trans R Soc Trop Med Hyg 103:, 109–121. [CrossRef] [PubMed]
    [Google Scholar]
  19. Han Z., Harty R. N.. ( 2004; ). The NS3 protein of bluetongue virus exhibits viroporin-like properties. . J Biol Chem 279:, 43092–43097. [CrossRef] [PubMed]
    [Google Scholar]
  20. Hawes P., Netherton C. L., Mueller M., Wileman T., Monaghan P.. ( 2007; ). Rapid freeze-substitution preserves membranes in high-pressure frozen tissue culture cells. . J Microsc 226:, 182–189. [CrossRef] [PubMed]
    [Google Scholar]
  21. Huismans H., Els H. J.. ( 1979; ). Characterization of the tubules associated with the replication of three different orbiviruses. . Virology 92:, 397–406. [CrossRef] [PubMed]
    [Google Scholar]
  22. Juhasz G., Neufeld T. P.. ( 2006; ). Autophagy: a forty-year search for a missing membrane source. . PLoS Biol 4:, e36. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lecatsas G., Erasmus B. J.. ( 1967; ). Electron microscopic study of the formation of african horse-sickness virus. . Arch Gesamte Virusforsch 22:, 442–450. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lin L.-T., Dawson P. W. H., Richardson C. D.. ( 2010; ). Viral interactions with macroautophagy: a double-edged sword. . Virology 402:, 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mathivanan S., Ji H., Simpson R. J.. ( 2010; ). Exosomes: extracellular organelles important in intercellular communication. . J Proteomics 73:, 1907–1920. [CrossRef] [PubMed]
    [Google Scholar]
  26. Meiring T. L., Huismans H., van Staden V.. ( 2009; ). Genome segment reassortment identifies non-structural protein NS3 as a key protein in African horsesickness virus release and alteration of membrane permeability. . Arch Virol 154:, 263–271. [CrossRef] [PubMed]
    [Google Scholar]
  27. Mellor P. S., Hamblin C.. ( 2004; ). African horse sickness. . Vet Res 35:, 445–466. [CrossRef] [PubMed]
    [Google Scholar]
  28. Mellor P. S., Boorman J., Baylis M.. ( 2000; ). Culicoides biting midges: their role as arbovirus vectors. . Annu Rev Entomol 45:, 307–340. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mellor P. S., Carpenter S., White D. M.. ( 2009; ). Blue tongue virus in the insect host. . In Bluetongue (Biology of Animal Infections), pp. 295–320. Edited by Mertens P., Baylis M., Mellor P... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  30. Mertens P. P., Diprose J.. ( 2004; ). The bluetongue virus core: a nano-scale transcription machine. . Virus Res 101:, 29–43. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nagaleekar V. K., Tiwari A. K., Kataria R. S., Bais M. V., Ravindra P. V., Kumar S.. ( 2007; ). Bluetongue virus induces apoptosis in cultured mammalian cells by both caspase-dependent extrinsic and intrinsic apoptotic pathways. . Arch Virol 152:, 1751–1756. [CrossRef] [PubMed]
    [Google Scholar]
  32. Owens R. J., Limn C., Roy P.. ( 2004; ). Role of an arbovirus nonstructural protein in cellular pathogenesis and virus release. . J Virol 78:, 6649–6656. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ratinier M., Caporale M., Golder M., Franzoni G., Allan K., Nunes S. F., Armezzani A., Bayoumy A., Rixon F.. & other authors ( 2011; ). Identification and characterization of a novel non-structural protein of bluetongue virus. . PLoS Pathog 7:, e1002477. [CrossRef] [PubMed]
    [Google Scholar]
  34. Reynolds E. S.. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef] [PubMed]
    [Google Scholar]
  35. Roy P., Mertens P. P. C., Casal I.. ( 1994; ). African horse sickness virus structure. . Comp Immunol Microbiol Infect Dis 17:, 243–273. [CrossRef] [PubMed]
    [Google Scholar]
  36. Rutkowska D. A., Meyer Q. C., Maree F., Vosloo W., Fick W., Huismans H.. ( 2011; ). The use of soluble African horse sickness viral protein 7 as an antigen delivery and presentation system. . Virus Res 156:, 35–48. [CrossRef] [PubMed]
    [Google Scholar]
  37. Shelly S., Lukinova N., Bambina S., Berman A., Cherry S.. ( 2009; ). Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus. . Immunity 30:, 588–598. [CrossRef] [PubMed]
    [Google Scholar]
  38. Stassen L., Huismans H., Theron J.. ( 2012; ). African horse sickness virus induces apoptosis in cultured mammalian cells. . Virus Res 163:, 385–389. [CrossRef] [PubMed]
    [Google Scholar]
  39. Stoltz M. A., van der Merwe C. F., Coetzee J., Huismans H.. ( 1996; ). Subcellular localization of the nonstructural protein NS3 of African horsesickness virus. . Onderstepoort J Vet Res 63:, 57–61.[PubMed]
    [Google Scholar]
  40. Studer D., Graber W., Al-Amoudi A., Eggli P.. ( 2001; ). A new approach for cryofixation by high-pressure freezing. . J Microsc 203:, 285–294. [CrossRef] [PubMed]
    [Google Scholar]
  41. Uitenweerde J. M., Theron J., Stoltz M. A., Huismans H.. ( 1995; ). The multimeric nonstructural NS2 proteins of bluetongue virus, African horsesickness virus, and epizootic hemorrhagic disease virus differ in their single-stranded RNA-binding ability. . Virology 209:, 624–632. [CrossRef] [PubMed]
    [Google Scholar]
  42. Van der Merwe C. F., Coetzee J.. ( 1992; ). Quetol 651 for general use: a revised formulation. . Proceedings of the Electron Microscopy Society of Southern Africa 22:, 31–32.
    [Google Scholar]
  43. Venter E., Van Der Merwe C. F., Van Staden V.. ( 2012; ). Utilization of cellulose microcapillary tubes as a model system for culturing and viral infection of mammalian cells. . Microsc Res Tech 75:, 1452–1459. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wechsler S. J., McHolland L. E.. ( 1988; ). Susceptibilities of 14 cell lines to bluetongue virus infection. . J Clin Microbiol 26:, 2324–2327.[PubMed]
    [Google Scholar]
  45. Wei T., Hibino H., Omura T.. ( 2008; ). Rice dwarf virus is engulfed into and released via vesicular compartments in cultured insect vector cells. . J Gen Virol 89:, 2915–2920. [CrossRef] [PubMed]
    [Google Scholar]
  46. Wirblich C., Bhattacharya B., Roy P.. ( 2006; ). Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I protein Tsg101. . J Virol 80:, 460–473. [CrossRef] [PubMed]
    [Google Scholar]
  47. Yang W., McCrae M. A.. ( 2012; ). The rotavirus enterotoxin (NSP4) promotes re-modeling of the intracellular microtubule network. . Virus Res 163:, 269–274. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.060400-0
Loading
/content/journal/jgv/10.1099/vir.0.060400-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error