1887

Abstract

HIV-1 transcription depends on cellular transcription factors that bind to sequences in the long-terminal repeat (LTR) promoter. Each HIV-1 subtype has a specific LTR promoter configuration, and minor sequence changes in transcription factor binding sites (TFBSs) or their arrangement can influence transcriptional activity, virus replication and latency properties. Previously, we investigated the proviral latency properties of different HIV-1 subtypes in the SupT1 T cell line. Here, subtype-specific latency and replication properties were studied in primary PHA-activated T lymphocytes. No major differences in latency and replication capacity were measured among the HIV-1 subtypes. Subtype B and AE LTRs were studied in more detail with regard to a putative AP-1 binding site using luciferase reporter constructs. c-Jun, a member of the AP-1 transcription factor family, can activate both subtype B and AE LTRs, but the latter showed a stronger response, reflecting a closer match with the consensus AP-1 binding site. c-Jun overexpression enhanced Tat-mediated transcription of the viral LTR, but in the absence of Tat inhibited basal promoter activity. Thus, c-Jun can exert a positive or negative effect via the AP-1 binding site in the HIV-1 LTR promoter, depending on the presence or absence of Tat.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059642-0
2014-04-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/4/968.html?itemId=/content/journal/jgv/10.1099/vir.0.059642-0&mimeType=html&fmt=ahah

References

  1. Berkhout B. , Jeang K. T. . ( 1992; ). Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. . J Virol 66:, 139–149.[PubMed]
    [Google Scholar]
  2. Berkhout B. , Silverman R. H. , Jeang K. T. . ( 1989; ). Tat trans-activates the human immunodeficiency virus through a nascent RNA target. . Cell 59:, 273–282. [CrossRef] [PubMed]
    [Google Scholar]
  3. Centlivre M. , Sommer P. , Michel M. , Ho Tsong Fang R. , Gofflo S. , Valladeau J. , Schmitt N. , Thierry F. , Hurtrel B. . & other authors ( 2005; ). HIV-1 clade promoters strongly influence spatial and temporal dynamics of viral replication in vivo. . J Clin Invest 115:, 348–358.[PubMed] [CrossRef]
    [Google Scholar]
  4. Centlivre M. , Sommer P. , Michel M. , Ho Tsong Fang R. , Gofflo S. , Valladeau J. , Schmitt N. , Wain-Hobson S. , Sala M. . ( 2006; ). The HIV-1 clade C promoter is particularly well adapted to replication in the gut in primary infection. . AIDS 20:, 657–666. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chen B. K. , Feinberg M. B. , Baltimore D. . ( 1997; ). The kappaB sites in the human immunodeficiency virus type 1 long terminal repeat enhance virus replication yet are not absolutely required for viral growth. . J Virol 71:, 5495–5504.[PubMed]
    [Google Scholar]
  6. Crotti A. , Chiara G. D. , Ghezzi S. , Lupo R. , Jeeninga R. E. , Liboi E. , Lievens P. M. , Vicenzi E. , Bovolenta C. . & other authors ( 2007; ). Heterogeneity of signal transducer and activator of transcription binding sites in the long-terminal repeats of distinct HIV-1 subtypes. . Open Virol J 1:, 26–32. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dahabieh M. S. , Ooms M. , Malcolm T. , Simon V. , Sadowski I. . ( 2011; ). Identification and functional analysis of a second RBF-2 binding site within the HIV-1 promoter. . Virology 418:, 57–66. [CrossRef] [PubMed]
    [Google Scholar]
  8. Das A. T. , Klaver B. , Berkhout B. . ( 1999; ). A hairpin structure in the R region of the human immunodeficiency virus type 1 RNA genome is instrumental in polyadenylation site selection. . J Virol 73:, 81–91.[PubMed]
    [Google Scholar]
  9. De Baar M. P. , De Ronde A. , Berkhout B. , Cornelissen M. , Van Der Horn K. H. , Van Der Schoot A. M. , De Wolf F. , Lukashov V. V. , Goudsmit J. . ( 2000; ). Subtype-specific sequence variation of the HIV type 1 long terminal repeat and primer-binding site. . AIDS Res Hum Retroviruses 16:, 499–504. [CrossRef] [PubMed]
    [Google Scholar]
  10. Donahue D. A. , Wainberg M. A. . ( 2013; ). Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. . Retrovirology 10:, 11–22. [CrossRef] [PubMed]
    [Google Scholar]
  11. Duh E. J. , Maury W. J. , Folks T. M. , Fauci A. S. , Rabson A. B. . ( 1989; ). Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF-kappa B sites in the long terminal repeat. . Proc Natl Acad Sci U S A 86:, 5974–5978. [CrossRef] [PubMed]
    [Google Scholar]
  12. Duverger A. , Jones J. , May J. , Bibollet-Ruche F. , Wagner F. A. , Cron R. Q. , Kutsch O. . ( 2009; ). Determinants of the establishment of human immunodeficiency virus type 1 latency. . J Virol 83:, 3078–3093. [CrossRef] [PubMed]
    [Google Scholar]
  13. Duverger A. , Wolschendorf F. , Zhang M. , Wagner F. , Hatcher B. , Jones J. , Cron R. Q. , van der Sluis R. M. , Jeeninga R. E. . & other authors ( 2013; ). An AP-1 binding site in the enhancer/core element of the HIV-1 promoter controls the ability of HIV-1 to establish latent infection. . J Virol 87:, 2264–2277. [CrossRef] [PubMed]
    [Google Scholar]
  14. Eferl R. , Wagner E. F. . ( 2003; ). AP-1: a double-edged sword in tumorigenesis. . Nat Rev Cancer 3:, 859–868. [CrossRef] [PubMed]
    [Google Scholar]
  15. Folks T. M. , Clouse K. A. , Justement J. , Rabson A. , Duh E. , Kehrl J. H. , Fauci A. S. . ( 1989; ). Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. . Proc Natl Acad Sci U S A 86:, 2365–2368. [CrossRef] [PubMed]
    [Google Scholar]
  16. González E. , Punzón C. , González M. , Fresno M. . ( 2001; ). HIV-1 Tat inhibits IL-2 gene transcription through qualitative and quantitative alterations of the cooperative Rel/AP1 complex bound to the CD28RE/AP1 composite element of the IL-2 promoter. . J Immunol 166:, 4560–4569.[PubMed] [CrossRef]
    [Google Scholar]
  17. Hess J. , Angel P. , Schorpp-Kistner M. . ( 2004; ). AP-1 subunits: quarrel and harmony among siblings. . J Cell Sci 117:, 5965–5973. [CrossRef] [PubMed]
    [Google Scholar]
  18. Isel C. , Karn J. . ( 1999; ). Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. . J Mol Biol 290:, 929–941. [CrossRef] [PubMed]
    [Google Scholar]
  19. Jeeninga R. E. , Hoogenkamp M. , Armand-Ugon M. , de Baar M. , Verhoef K. , Berkhout B. . ( 2000; ). Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G. . J Virol 74:, 3740–3751. [CrossRef] [PubMed]
    [Google Scholar]
  20. Jeeninga R. E. , Westerhout E. M. , van Gerven M. L. , Berkhout B. . ( 2008; ). HIV-1 latency in actively dividing human T cell lines. . Retrovirology 5:, 37–50. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kamine J. , Subramanian T. , Chinnadurai G. . ( 1991; ). Sp1-dependent activation of a synthetic promoter by human immunodeficiency virus type 1 Tat protein. . Proc Natl Acad Sci U S A 88:, 8510–8514. [CrossRef] [PubMed]
    [Google Scholar]
  22. Koken S. E. , van Wamel J. L. B. , Goudsmit J. , Berkhout B. , Geelen J. L. M. C. . ( 1992; ). Natural variants of the HIV-1 long terminal repeat: analysis of promoters with duplicated DNA regulatory motifs. . Virology 191:, 968–972. [CrossRef] [PubMed]
    [Google Scholar]
  23. Koken S. E. C. , van Wamel J. L. , Geelen J. L. M. C. , Berkhout B. . ( 1994; ). Functional analysis of the ACTGCTGA sequence motif in the human immunodeficiency virus type-1 long terminal repeat promoter. . J Biomed Sci 1:, 83–92. [CrossRef] [PubMed]
    [Google Scholar]
  24. Malcolm T. , Kam J. , Pour P. S. , Sadowski I. . ( 2008; ). Specific interaction of TFII-I with an upstream element on the HIV-1 LTR regulates induction of latent provirus. . FEBS Lett 582:, 3903–3908. [CrossRef] [PubMed]
    [Google Scholar]
  25. Marshall N. F. , Price D. H. . ( 1995; ). Purification of P-TEFb, a transcription factor required for the transition into productive elongation. . J Biol Chem 270:, 12335–12338. [CrossRef] [PubMed]
    [Google Scholar]
  26. Meng Q. , Xia Y. . ( 2011; ). c-Jun, at the crossroad of the signaling network. . Protein Cell 2:, 889–898. [CrossRef] [PubMed]
    [Google Scholar]
  27. Montano M. A. , Novitsky V. A. , Blackard J. T. , Cho N. L. , Katzenstein D. A. , Essex M. . ( 1997; ). Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes. . J Virol 71:, 8657–8665.[PubMed]
    [Google Scholar]
  28. Nabel G. , Baltimore D. . ( 1987; ). An inducible transcription factor activates expression of human immunodeficiency virus in T cells. . Nature 326:, 711–713. [CrossRef] [PubMed]
    [Google Scholar]
  29. Naghavi M. H. , Schwartz S. , Sönnerborg A. , Vahlne A. . ( 1999; ). Long terminal repeat promoter/enhancer activity of different subtypes of HIV type 1. . AIDS Res Hum Retroviruses 15:, 1293–1303. [CrossRef] [PubMed]
    [Google Scholar]
  30. Peden K. , Emerman M. , Montagnier L. . ( 1991; ). Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1LAI, HIV-1MAL, and HIV-1ELI. . Virology 185:, 661–672. [CrossRef] [PubMed]
    [Google Scholar]
  31. Pereira L. A. , Bentley K. , Peeters A. , Churchill M. J. , Deacon N. J. . ( 2000; ). A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. . Nucleic Acids Res 28:, 663–668. [CrossRef] [PubMed]
    [Google Scholar]
  32. Rizzi C. , Crippa M. P. , Jeeninga R. E. , Berkhout B. , Blasi F. , Poli G. , Alfano M. . ( 2006; ). Pertussis toxin B-oligomer suppresses IL-6 induced HIV-1 and chemokine expression in chronically infected U1 cells via inhibition of activator protein 1. . J Immunol 176:, 999–1006.[PubMed] [CrossRef]
    [Google Scholar]
  33. Roof P. , Ricci M. , Genin P. , Montano M. A. , Essex M. , Wainberg M. A. , Gatignol A. , Hiscott J. . ( 2002; ). Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. . Virology 296:, 77–83. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ross E. K. , Buckler-White A. J. , Rabson A. B. , Englund G. , Martin M. A. . ( 1991; ). Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. . J Virol 65:, 4350–4358.[PubMed]
    [Google Scholar]
  35. Ruijter J. M. , Thygesen H. H. , Schoneveld O. J. , Das A. T. , Berkhout B. , Lamers W. H. . ( 2006; ). Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology. . Retrovirology 3:, 2–10. [CrossRef] [PubMed]
    [Google Scholar]
  36. Sadowski I. , Mitchell D. A. . ( 2005; ). TFII-I and USF (RBF-2) regulate Ras/MAPK-responsive HIV-1 transcription in T cells. . Eur J Cancer 41:, 2528–2536. [CrossRef] [PubMed]
    [Google Scholar]
  37. Sanders R. W. , de Jong E. C. , Baldwin C. E. , Schuitemaker J. H. , Kapsenberg M. L. , Berkhout B. . ( 2002; ). Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. . J Virol 76:, 7812–7821. [CrossRef] [PubMed]
    [Google Scholar]
  38. van der Sluis R. M. , Pollakis G. , van Gerven M. L. , Berkhout B. , Jeeninga R. E. . ( 2011; ). Latency profiles of full length HIV-1 molecular clone variants with a subtype specific promoter. . Retrovirology 8:, 73–85. [CrossRef] [PubMed]
    [Google Scholar]
  39. van der Sluis R. M. , Jeeninga R. E. , Berkhout B. . ( 2013a; ). Establishment and molecular mechanisms of HIV-1 latency in T cells. . Curr Opin Virol 3:, 700–706. [CrossRef] [PubMed]
    [Google Scholar]
  40. van der Sluis R. M. , van Montfort T. , Pollakis G. , Sanders R. W. , Speijer D. , Berkhout B. , Jeeninga R. E. . ( 2013b; ). Dendritic cell-induced activation of latent HIV-1 provirus in actively proliferating primary T lymphocytes. . PLoS Pathog 9:, e1003259. [CrossRef] [PubMed]
    [Google Scholar]
  41. Van Lint C. , Bouchat S. , Marcello A. . ( 2013; ). HIV-1 transcription and latency: an update. . Retrovirology 10:, 67. [CrossRef] [PubMed]
    [Google Scholar]
  42. van Montfort T. , Thomas A. A. , Pollakis G. , Paxton W. A. . ( 2008; ). Dendritic cells preferentially transfer CXCR4-using human immunodeficiency virus type 1 variants to CD4+ T lymphocytes in trans . . J Virol 82:, 7886–7896. [CrossRef] [PubMed]
    [Google Scholar]
  43. van Opijnen T. , Jeeninga R. E. , Boerlijst M. C. , Pollakis G. P. , Zetterberg V. , Salminen M. , Berkhout B. . ( 2004a; ). Human immunodeficiency virus type 1 subtypes have a distinct long terminal repeat that determines the replication rate in a host-cell-specific manner. . J Virol 78:, 3675–3683. [CrossRef] [PubMed]
    [Google Scholar]
  44. van Opijnen T. , Kamoschinski J. , Jeeninga R. E. , Berkhout B. . ( 2004b; ). The human immunodeficiency virus type 1 promoter contains a CATA box instead of a TATA box for optimal transcription and replication. . J Virol 78:, 6883–6890. [CrossRef] [PubMed]
    [Google Scholar]
  45. Verhoef K. , Koper M. , Berkhout B. . ( 1997; ). Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication. . Virology 237:, 228–236. [CrossRef] [PubMed]
    [Google Scholar]
  46. Verhoef K. , Sanders R. W. , Fontaine V. , Kitajima S. , Berkhout B. . ( 1999; ). Evolution of the human immunodeficiency virus type 1 long terminal repeat promoter by conversion of an NF-kappaB enhancer element into a GABP binding site. . J Virol 73:, 1331–1340.[PubMed]
    [Google Scholar]
  47. Wei P. , Garber M. E. , Fang S. M. , Fischer W. H. , Jones K. A. . ( 1998; ). A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. . Cell 92:, 451–462. [CrossRef] [PubMed]
    [Google Scholar]
  48. West M. J. , Lowe A. D. , Karn J. . ( 2001; ). Activation of human immunodeficiency virus transcription in T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. . J Virol 75:, 8524–8537. [CrossRef] [PubMed]
    [Google Scholar]
  49. Williams S. A. , Chen L. F. , Kwon H. , Fenard D. , Bisgrove D. , Verdin E. , Greene W. C. . ( 2004; ). Prostratin antagonizes HIV latency by activating NF-kappaB. . J Biol Chem 279:, 42008–42017. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059642-0
Loading
/content/journal/jgv/10.1099/vir.0.059642-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error