Norovirus gene expression and replication Free

Abstract

Noroviruses are small, positive-sense RNA viruses within the family , and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059634-0
2014-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/278.html?itemId=/content/journal/jgv/10.1099/vir.0.059634-0&mimeType=html&fmt=ahah

References

  1. Alonso C., Oviedo J. M., Martín-Alonso J. M., Díaz E., Boga J. A., Parra F. 1998; Programmed cell death in the pathogenesis of rabbit hemorrhagic disease. Arch Virol 143:321–332 [View Article][PubMed]
    [Google Scholar]
  2. Asanaka M., Atmar R. L., Ruvolo V., Crawford S. E., Neill F. H., Estes M. K. 2005; Replication and packaging of Norwalk virus RNA in cultured mammalian cells. Proc Natl Acad Sci U S A 102:10327–10332 [View Article][PubMed]
    [Google Scholar]
  3. Atmar R. L., Bernstein D. I., Harro C. D., Al-Ibrahim M. S., Chen W. H., Ferreira J., Estes M. K., Graham D. Y., Opekun A. R. other authors 2011; Norovirus vaccine against experimental human Norwalk virus illness. N Engl J Med 365:2178–2187 [View Article][PubMed]
    [Google Scholar]
  4. Bailey D., Kaiser W. J., Hollinshead M., Moffat K., Chaudhry Y., Wileman T., Sosnovtsev S. V., Goodfellow I. G. 2010a; Feline calicivirus p32, p39 and p30 proteins localize to the endoplasmic reticulum to initiate replication complex formation. J Gen Virol 91:739–749 [View Article][PubMed]
    [Google Scholar]
  5. Bailey D., Karakasiliotis I., Vashist S., Chung L. M. W., Rees J., McFadden N., Benson A., Yarovinsky F., Simmonds P., Goodfellow I. 2010b; Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J Virol 84:2859–2870 [View Article][PubMed]
    [Google Scholar]
  6. Belliot G., Sosnovtsev S. V., Chang K.-O., Babu V., Uche U., Arnold J. J., Cameron C. E., Green K. Y. 2005; Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase. J Virol 79:2393–2403 [View Article][PubMed]
    [Google Scholar]
  7. Belov G. A., van Kuppeveld F. J. M. 2012; (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol 2:740–747 [View Article][PubMed]
    [Google Scholar]
  8. Bertolotti-Ciarlet A., White L. J., Chen R., Prasad B. V. V., Estes M. K. 2002; Structural requirements for the assembly of Norwalk virus-like particles. J Virol 76:4044–4055 [View Article][PubMed]
    [Google Scholar]
  9. Bok K., Green K. Y. 2012; Norovirus gastroenteritis in immunocompromised patients. N Engl J Med 367:2126–2132 [View Article][PubMed]
    [Google Scholar]
  10. Bok K., Prikhodko V. G., Green K. Y., Sosnovtsev S. V. 2009; Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin. J Virol 83:3647–3656 [View Article][PubMed]
    [Google Scholar]
  11. Bull R. A., Hyde J., Mackenzie J. M., Hansman G. S., Oka T., Takeda N., White P. A. 2011; Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. Virus Genes 42:16–27 [View Article][PubMed]
    [Google Scholar]
  12. Centers for Disease Control and Prevention (CDC) 2002; Outbreak of acute gastroenteritis associated with Norwalk-like viruses among British military personnel – Afghanistan, May 2002. MMWR Morb Mortal Wkly Rep 51:477–479[PubMed]
    [Google Scholar]
  13. Chan W. K. Y., Lee K. W., Fan T. W. 2010; Pneumatosis intestinalis in a child with nephrotic syndrome and norovirus gastroenteritis. Pediatr Nephrol 25:1563–1566 [View Article][PubMed]
    [Google Scholar]
  14. Chang K.-O. 2009; Role of cholesterol pathways in norovirus replication. J Virol 83:8587–8595 [View Article][PubMed]
    [Google Scholar]
  15. Chang K.-O., George D. W. 2007; Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells. J Virol 81:12111–12118 [View Article][PubMed]
    [Google Scholar]
  16. Chang K.-O., Sosnovtsev S. V., Belliot G., King A. D., Green K. Y. 2006; Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. Virology 353:463–473 [View Article][PubMed]
    [Google Scholar]
  17. Chaudhry Y., Nayak A., Bordeleau M.-E., Tanaka J., Pelletier J., Belsham G. J., Roberts L. O., Goodfellow I. G. 2006; Caliciviruses differ in their functional requirements for eIF4F components. J Biol Chem 281:25315–25325 [View Article][PubMed]
    [Google Scholar]
  18. Chaudhry Y., Skinner M. A., Goodfellow I. G. 2007; Recovery of genetically defined murine norovirus in tissue culture by using a fowlpox virus expressing T7 RNA polymerase. J Gen Virol 88:2091–2100 [View Article][PubMed]
    [Google Scholar]
  19. Cheetham S., Souza M., Meulia T., Grimes S., Han M. G., Saif L. J. 2006; Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol 80:10372–10381 [View Article][PubMed]
    [Google Scholar]
  20. Clarke I. N., Lambden P. R. 2000; Organization and expression of calicivirus genes. J Infect Dis 181:Suppl 2S309–S316 [View Article][PubMed]
    [Google Scholar]
  21. Daughenbaugh K. F., Fraser C. S., Hershey J. W. B., Hardy M. E. 2003; The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J 22:2852–2859 [View Article][PubMed]
    [Google Scholar]
  22. Dodd D. A., Giddings T. H. Jr, Kirkegaard K. 2001; Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75:8158–8165 [View Article][PubMed]
    [Google Scholar]
  23. Donaldson E. F., Lindesmith L. C., Lobue A. D., Baric R. S. 2008; Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol Rev 225:190–211 [View Article][PubMed]
    [Google Scholar]
  24. Donaldson E. F., Lindesmith L. C., Lobue A. D., Baric R. S. 2010; Viral shape-shifting: norovirus evasion of the human immune system. Nat Rev Microbiol 8:231–241 [View Article][PubMed]
    [Google Scholar]
  25. Duizer E., Schwab K. J., Neill F. H., Atmar R. L., Koopmans M. P. G., Estes M. K. 2004; Laboratory efforts to cultivate noroviruses. J Gen Virol 85:79–87 [View Article][PubMed]
    [Google Scholar]
  26. Eden J.-S., Sharpe L. J., White P. A., Brown A. J. 2011; Norovirus RNA-dependent RNA polymerase is phosphorylated by an important survival kinase, Akt. J Virol 85:10894–10898 [View Article][PubMed]
    [Google Scholar]
  27. Ettayebi K., Hardy M. E. 2003; Norwalk virus nonstructural protein p48 forms a complex with the SNARE regulator VAP-A and prevents cell surface expression of vesicular stomatitis virus G protein. J Virol 77:11790–11797 [View Article][PubMed]
    [Google Scholar]
  28. Farkas T., Nakajima S., Sugieda M., Deng X., Zhong W., Jiang X. 2005; Seroprevalence of noroviruses in swine. J Clin Microbiol 43:657–661 [View Article][PubMed]
    [Google Scholar]
  29. Fernandez-Vega V., Sosnovtsev S. V., Belliot G., King A. D., Mitra T., Gorbalenya A., Green K. Y. 2004; Norwalk virus N-terminal nonstructural protein is associated with disassembly of the Golgi complex in transfected cells. J Virol 78:4827–4837 [View Article][PubMed]
    [Google Scholar]
  30. Firth A. E., Brierley I. 2012; Non-canonical translation in RNA viruses. J Gen Virol 93:1385–1409 [View Article][PubMed]
    [Google Scholar]
  31. Fitzgerald K. D., Semler B. L. 2009; Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim Biophys Acta 1789:518–528 [View Article][PubMed]
    [Google Scholar]
  32. Fuentes C., Bosch A., Pintó R. M., Guix S. 2012; Identification of human astrovirus genome-linked protein (VPg) essential for virus infectivity. J Virol 86:10070–10078 [View Article][PubMed]
    [Google Scholar]
  33. Furman L. M., Maaty W. S., Petersen L. K., Ettayebi K., Hardy M. E., Bothner B. 2009; Cysteine protease activation and apoptosis in Murine norovirus infection. Virol J 6:139 [View Article][PubMed]
    [Google Scholar]
  34. Gerondopoulos A., Jackson T., Monaghan P., Doyle N., Roberts L. O. 2010; Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. J Gen Virol 91:1428–1438 [View Article][PubMed]
    [Google Scholar]
  35. Glass R. I., Parashar U. D., Estes M. K. 2009; Norovirus gastroenteritis. N Engl J Med 361:1776–1785 [View Article][PubMed]
    [Google Scholar]
  36. Goodfellow I. 2011; The genome-linked protein VPg of vertebrate viruses – a multifaceted protein. Curr Opin Virol 1:355–362 [View Article][PubMed]
    [Google Scholar]
  37. Goodfellow I., Chaudhry Y., Richardson A., Meredith J., Almond J. W., Barclay W., Evans D. J. 2000; Identification of a cis-acting replication element within the poliovirus coding region. J Virol 74:4590–4600 [View Article][PubMed]
    [Google Scholar]
  38. Goodfellow I. G., Kerrigan D., Evans D. J. 2003; Structure and function analysis of the poliovirus cis-acting replication element (CRE). RNA 9:124–137 [View Article][PubMed]
    [Google Scholar]
  39. Goodfellow I., Chaudhry Y., Gioldasi I., Gerondopoulos A., Natoni A., Labrie L., Laliberté J.-F., Roberts L. 2005; Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep 6:968–972 [View Article][PubMed]
    [Google Scholar]
  40. Green K. Y., Mory A., Fogg M. H., Weisberg A., Belliot G., Wagner M., Mitra T., Ehrenfeld E., Cameron C. E., Sosnovtsev S. V. 2002; Isolation of enzymatically active replication complexes from feline calicivirus-infected cells. J Virol 76:8582–8595 [View Article][PubMed]
    [Google Scholar]
  41. Guix S., Asanaka M., Katayama K., Crawford S. E., Neill F. H., Atmar R. L., Estes M. K. 2007; Norwalk virus RNA is infectious in mammalian cells. J Virol 81:12238–12248 [View Article][PubMed]
    [Google Scholar]
  42. Gutiérrez-Escolano A. L., Brito Z. U., del Angel R. M., Jiang X. 2000a; Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. J Virol 74:8558–8562 [View Article][PubMed]
    [Google Scholar]
  43. Gutiérrez-Escolano A. L., Brito Z. U., del Angel R. M., Jiang X. 2000b; Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. J Virol 74:8558–8562 [View Article][PubMed]
    [Google Scholar]
  44. Gutiérrez-Escolano A. L., Vázquez-Ochoa M., Escobar-Herrera J., Hernández-Acosta J. 2003; La, PTB, and PAB proteins bind to the 3′ untranslated region of Norwalk virus genomic RNA. Biochem Biophys Res Commun 311:759–766 [View Article][PubMed]
    [Google Scholar]
  45. Hall A. J., Lopman B. A., Payne D. C., Patel M. M., Gastañaduy P. A., Vinjé J., Parashar U. D. 2013; Norovirus disease in the United States. Emerg Infect Dis 19:1198–1205 [View Article][PubMed]
    [Google Scholar]
  46. Herbert T. P., Brierley I., Brown T. D. 1997; Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. J Gen Virol 78:1033–1040[PubMed]
    [Google Scholar]
  47. Högbom M., Jäger K., Robel I., Unge T., Rohayem J. 2009; The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity. J Gen Virol 90:281–291 [View Article][PubMed]
    [Google Scholar]
  48. Hyde J. L., Mackenzie J. M. 2010; Subcellular localization of the MNV-1 ORF1 proteins and their potential roles in the formation of the MNV-1 replication complex. Virology 406:138–148 [View Article][PubMed]
    [Google Scholar]
  49. Hyde J. L., Sosnovtsev S. V., Green K. Y., Wobus C., Virgin H. W., Mackenzie J. M. 2009; Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. J Virol 83:9709–9719 [View Article][PubMed]
    [Google Scholar]
  50. Hyde J. L., Gillespie L. K., Mackenzie J. M. 2012; Mouse norovirus 1 utilizes the cytoskeleton network to establish localization of the replication complex proximal to the microtubule organizing center. J Virol 86:4110–4122 [View Article][PubMed]
    [Google Scholar]
  51. Ito S., Takeshita S., Nezu A., Aihara Y., Usuku S., Noguchi Y., Yokota S. 2006; Norovirus-associated encephalopathy. Pediatr Infect Dis J 25:651–652 [View Article][PubMed]
    [Google Scholar]
  52. Jung K., Wang Q., Kim Y., Scheuer K., Zhang Z., Shen Q., Chang K.-O., Saif L. J. 2012; The effects of simvastatin or interferon-α on infectivity of human norovirus using a gnotobiotic pig model for the study of antivirals. PLoS ONE 7:e41619 [View Article][PubMed]
    [Google Scholar]
  53. Kaiser W. J., Chaudhry Y., Sosnovtsev S. V., Goodfellow I. G. 2006; Analysis of protein–protein interactions in the feline calicivirus replication complex. J Gen Virol 87:363–368 [View Article][PubMed]
    [Google Scholar]
  54. Kapikian A. Z. 2000; The discovery of the 27-nm Norwalk virus: an historic perspective. J Infect Dis 181:Suppl 2S295–S302 [View Article][PubMed]
    [Google Scholar]
  55. Karakasiliotis I., Vashist S., Bailey D., Abente E. J., Green K. Y., Roberts L. O., Sosnovtsev S. V., Goodfellow I. G. 2010; Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. PLoS ONE 5:e9562 [View Article][PubMed]
    [Google Scholar]
  56. Karst S. M., Wobus C. E., Lay M., Davidson J., Virgin H. W. IV 2003; STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:1575–1578 [View Article][PubMed]
    [Google Scholar]
  57. Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K. J., Takeuchi O., Akira S. 2005; IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981–988 [View Article][PubMed]
    [Google Scholar]
  58. Kim M. J., Kim Y.-J., Lee J. H., Lee J. S., Kim J. H., Cheon D. S., Jeong H. S., Koo H. H., Sung K. W. other authors 2011; Norovirus: a possible cause of pneumatosis intestinalis. J Pediatr Gastroenterol Nutr 52:314–318 [View Article][PubMed]
    [Google Scholar]
  59. Kuyumcu-Martinez M., Belliot G., Sosnovtsev S. V., Chang K.-O., Green K. Y., Lloyd R. E. 2004; Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J Virol 78:8172–8182 [View Article][PubMed]
    [Google Scholar]
  60. Leen E. N., Baeza G., Curry S. 2012; Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation. PLoS ONE 7:e38723 [View Article][PubMed]
    [Google Scholar]
  61. Leen E. N., Kwok K. Y. R., Birtley J. R., Simpson P. J., Subba-Reddy C. V., Chaudhry Y., Sosnovtsev S. V., Green K. Y., Prater S. N. other authors 2013; Structures of the compact helical core domains of feline calicivirus and murine norovirus VPg proteins. J Virol 87:5318–5330 [View Article][PubMed]
    [Google Scholar]
  62. Léonard S., Plante D., Wittmann S., Daigneault N., Fortin M. G., Laliberté J. F. 2000; Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. J Virol 74:7730–7737 [View Article][PubMed]
    [Google Scholar]
  63. Liu Y., Wimmer E., Paul A. V. 2009; Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789:495–517 [View Article][PubMed]
    [Google Scholar]
  64. López-Manríquez E., Vashist S., Ureña L., Goodfellow I., Chavez P., Mora-Heredia J. E., Cancio-Lonches C., Garrido E., Gutiérrez-Escolano A. L. 2013; Norovirus genome circularization and efficient replication are facilitated by binding of PCBP2 and hnRNP A1. J Virol 87:11371–11387 [View Article][PubMed]
    [Google Scholar]
  65. McCartney S. A., Thackray L. B., Gitlin L., Gilfillan S., Virgin H. W., Colonna M. 2008; MDA-5 recognition of a murine norovirus. PLoS Pathog 4:e1000108 [View Article][PubMed]
    [Google Scholar]
  66. McCormick C. J., Salim O., Lambden P. R., Clarke I. N. 2008; Translation termination reinitiation between open reading frame 1 (ORF1) and ORF2 enables capsid expression in a bovine norovirus without the need for production of viral subgenomic RNA. J Virol 82:8917–8921 [View Article][PubMed]
    [Google Scholar]
  67. McFadden N., Bailey D., Carrara G., Benson A., Chaudhry Y., Shortland A., Heeney J., Yarovinsky F., Simmonds P. other authors 2011; Norovirus regulation of the innate immune response occurs via the product of the alternative open reading frame 4. PLoS Pathog 7:e1002413 [View Article][PubMed]
    [Google Scholar]
  68. Medici M. C., Abelli L. A., Dodi I., Dettori G., Chezzi C. 2010; Norovirus RNA in the blood of a child with gastroenteritis and convulsions – a case report. J Clin Virol 48:147–149 [View Article][PubMed]
    [Google Scholar]
  69. Mesquita J. R., Barclay L., Nascimento M. S. J., Vinjé J. 2010; Novel norovirus in dogs with diarrhea. Emerg Infect Dis 16:980–982 [View Article][PubMed]
    [Google Scholar]
  70. Mesquita J. R., Costantini V. P., Cannon J. L., Lin S.-C., Nascimento M. S. J., Vinjé J. 2013; Presence of antibodies against genogroup VI norovirus in humans. Virol J 10:176 [View Article][PubMed]
    [Google Scholar]
  71. Meyers G. 2007; Characterization of the sequence element directing translation reinitiation in RNA of the calicivirus rabbit hemorrhagic disease virus. J Virol 81:9623–9632 [View Article][PubMed]
    [Google Scholar]
  72. Morales M., Bárcena J., Ramírez M. A., Boga J. A., Parra F., Torres J. M. 2004; Synthesis in vitro of rabbit hemorrhagic disease virus subgenomic RNA by internal initiation on (–)sense genomic RNA: mapping of a subgenomic promoter. J Biol Chem 279:17013–17018 [View Article][PubMed]
    [Google Scholar]
  73. Mumphrey S. M., Changotra H., Moore T. N., Heimann-Nichols E. R., Wobus C. E., Reilly M. J., Moghadamfalahi M., Shukla D., Karst S. M. 2007; Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J Virol 81:3251–3263 [View Article][PubMed]
    [Google Scholar]
  74. Nagy P. D., Pogany J. 2011; The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10:137–149[PubMed]
    [Google Scholar]
  75. Napthine S., Lever R. A., Powell M. L., Jackson R. J., Brown T. D. K., Brierley I. 2009; Expression of the VP2 protein of murine norovirus by a translation termination-reinitiation strategy. PLoS ONE 4:e8390 [View Article][PubMed]
    [Google Scholar]
  76. Papafragkou E., Hewitt J., Park G. W., Greening G., Vinjé J. 2013; Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLoS ONE 8:e63485 [View Article][PubMed]
    [Google Scholar]
  77. Patel M. M., Widdowson M.-A., Glass R. I., Akazawa K., Vinjé J., Parashar U. D. 2008; Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg Infect Dis 14:1224–1231 [View Article][PubMed]
    [Google Scholar]
  78. Perry J. W., Wobus C. E. 2010; Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. J Virol 84:6163–6176 [View Article][PubMed]
    [Google Scholar]
  79. Pettersson R. F., Ambros V., Baltimore D. 1978; Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. J Virol 27:357–365[PubMed]
    [Google Scholar]
  80. Pletneva M. A., Sosnovtsev S. V., Green K. Y. 2001; The genome of hawaii virus and its relationship with other members of the caliciviridae. Virus Genes 23:5–16 [View Article][PubMed]
    [Google Scholar]
  81. Prasad B. V., Rothnagel R., Jiang X., Estes M. K. 1994; Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. J Virol 68:5117–5125[PubMed]
    [Google Scholar]
  82. Rohayem J., Robel I., Jäger K., Scheffler U., Rudolph W. 2006; Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J Virol 80:7060–7069 [View Article][PubMed]
    [Google Scholar]
  83. Rondy M., Koopmans M., Rotsaert C., Van Loon T., Beljaars B., Van Dijk G., Siebenga J., Svraka S., Rossen J. W. A. other authors 2011; Norovirus disease associated with excess mortality and use of statins: a retrospective cohort study of an outbreak following a pilgrimage to Lourdes. Epidemiol Infect 139:453–463 [View Article][PubMed]
    [Google Scholar]
  84. Sandoval-Jaime C., Gutiérrez-Escolano A. L. 2009; Cellular proteins mediate 5′–3′ end contacts of Norwalk virus genomic RNA. Virology 387:322–330 [View Article][PubMed]
    [Google Scholar]
  85. Seth R. B., Sun L., Ea C.-K., Chen Z. J. 2005; Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682 [View Article][PubMed]
    [Google Scholar]
  86. Sharp T. M., Guix S., Katayama K., Crawford S. E., Estes M. K. 2010; Inhibition of cellular protein secretion by norwalk virus nonstructural protein p22 requires a mimic of an endoplasmic reticulum export signal. PLoS ONE 5:e13130 [View Article][PubMed]
    [Google Scholar]
  87. Sharp T. M., Crawford S. E., Ajami N. J., Neill F. H., Atmar R. L., Katayama K., Utama B., Estes M. K. 2012; Secretory pathway antagonism by calicivirus homologues of Norwalk virus nonstructural protein p22 is restricted to noroviruses. Virol J 9:181 [View Article][PubMed]
    [Google Scholar]
  88. Simmonds P., Karakasiliotis I., Bailey D., Chaudhry Y., Evans D. J., Goodfellow I. G. 2008; Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses. Nucleic Acids Res 36:2530–2546 [View Article][PubMed]
    [Google Scholar]
  89. Someya Y., Takeda N., Miyamura T. 2002; Identification of active-site amino acid residues in the Chiba virus 3C-like protease. J Virol 76:5949–5958 [View Article][PubMed]
    [Google Scholar]
  90. Someya Y., Takeda N., Wakita T. 2008; Saturation mutagenesis reveals that GLU54 of norovirus 3C-like protease is not essential for the proteolytic activity. J Biochem 144:771–780 [View Article][PubMed]
    [Google Scholar]
  91. Sosnovtsev S., Green K. Y. 1995; RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VpG for infectivity. Virology 210:383–390 [View Article][PubMed]
    [Google Scholar]
  92. Sosnovtsev S. V., Prikhod’ko E. A., Belliot G., Cohen J. I., Green K. Y. 2003; Feline calicivirus replication induces apoptosis in cultured cells. Virus Res 94:1–10 [View Article][PubMed]
    [Google Scholar]
  93. Sosnovtsev S. V., Belliot G., Chang K.-O., Onwudiwe O., Green K. Y. 2005; Feline calicivirus VP2 is essential for the production of infectious virions. J Virol 79:4012–4024 [View Article][PubMed]
    [Google Scholar]
  94. Sosnovtsev S. V., Belliot G., Chang K.-O., Prikhodko V. G., Thackray L. B., Wobus C. E., Karst S. M., Virgin H. W., Green K. Y. 2006; Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80:7816–7831 [View Article][PubMed]
    [Google Scholar]
  95. Subba-Reddy C. V., Goodfellow I., Kao C. C. 2011; VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J Virol 85:13027–13037 [View Article][PubMed]
    [Google Scholar]
  96. Subba-Reddy C. V., Yunus M. A., Goodfellow I. G., Kao C. C. 2012; Norovirus RNA synthesis is modulated by an interaction between the viral RNA-dependent RNA polymerase and the major capsid protein, VP1. J Virol 86:10138–10149 [View Article][PubMed]
    [Google Scholar]
  97. Takanashi S., Saif L. J., Hughes J. H., Meulia T., Jung K., Scheuer K. A., Wang Q. 2013; Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch Virol doi: 10.1007/s00705-013-1806-4 [Epub ahead of print] [View Article][PubMed]
    [Google Scholar]
  98. Taube S., Perry J. W., Yetming K., Patel S. P., Auble H., Shu L., Nawar H. F., Lee C. H., Connell T. D. other authors 2009; Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J Virol 83:4092–4101 [View Article][PubMed]
    [Google Scholar]
  99. Taube S., Perry J. W., McGreevy E., Yetming K., Perkins C., Henderson K., Wobus C. E. 2012; Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-dependent manner. J Virol 86:5584–5593 [View Article][PubMed]
    [Google Scholar]
  100. Taube S., Kolawole A. O., Höhne M., Wilkinson J. E., Handley S. A., Perry J. W., Thackray L. B., Akkina R., Wobus C. E. 2013; A mouse model for human norovirus. MBio 4:e00450-13 [View Article][PubMed]
    [Google Scholar]
  101. Thackray L. B., Duan E., Lazear H. M., Kambal A., Schreiber R. D., Diamond M. S., Virgin H. W. 2012; Critical role for interferon regulatory factor 3 (IRF-3) and IRF-7 in type I interferon-mediated control of murine norovirus replication. J Virol 86:13515–13523 [View Article][PubMed]
    [Google Scholar]
  102. Thorne L., Bailey D., Goodfellow I. 2012; High-resolution functional profiling of the norovirus genome. J Virol 86:11441–11456 [View Article][PubMed]
    [Google Scholar]
  103. Troeger H., Loddenkemper C., Schneider T., Schreier E., Epple H.-J., Zeitz M., Fromm M., Schulzke J.-D. 2009; Structural and functional changes of the duodenum in human norovirus infection. Gut 58:1070–1077 [View Article][PubMed]
    [Google Scholar]
  104. Turcios-Ruiz R. M., Axelrod P., St John K., Bullitt E., Donahue J., Robinson N., Friss H. E. 2008; Outbreak of necrotizing enterocolitis caused by norovirus in a neonatal intensive care unit. J Pediatr 153:339–344 [View Article][PubMed]
    [Google Scholar]
  105. Vashist S., Bailey D., Putics A., Goodfellow I. 2009; Model systems for the study of human norovirus biology. Future Virol 4:353–367 [View Article][PubMed]
    [Google Scholar]
  106. Vashist S., Ureña L., Chaudhry Y., Goodfellow I. 2012; Identification of RNA–protein interaction networks involved in the norovirus life cycle. J Virol 86:11977–11990 [View Article][PubMed]
    [Google Scholar]
  107. Victoria M., Colina R., Miagostovich M. P., Leite J. P., Cristina J. 2009; Phylogenetic prediction of cis-acting elements: a cre-like sequence in norovirus genome?. BMC Res Notes 2:176 [CrossRef]
    [Google Scholar]
  108. Vongpunsawad S., Venkataram Prasad B. V., Estes M. K. 2013; Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. J Virol 87:4818–4825 [View Article][PubMed]
    [Google Scholar]
  109. Ward V. K., McCormick C. J., Clarke I. N., Salim O., Wobus C. E., Thackray L. B., Virgin H. W. IV, Lambden P. R. 2007; Recovery of infectious murine norovirus using pol II-driven expression of full-length cDNA. Proc Natl Acad Sci U S A 104:11050–11055 [View Article][PubMed]
    [Google Scholar]
  110. Wells S. E., Hillner P. E., Vale R. D., Sachs A. B. 1998; Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2:135–140 [View Article][PubMed]
    [Google Scholar]
  111. Willcocks M. M., Carter M. J., Roberts L. O. 2004; Cleavage of eukaryotic initiation factor eIF4G and inhibition of host-cell protein synthesis during feline calicivirus infection. J Gen Virol 85:1125–1130 [View Article][PubMed]
    [Google Scholar]
  112. Wobus C. E., Karst S. M., Thackray L. B., Chang K.-O., Sosnovtsev S. V., Belliot G., Krug A., Mackenzie J. M., Green K. Y., Virgin H. W. 2004; Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432 [View Article][PubMed]
    [Google Scholar]
  113. Yunus M. A., Chung L. M. W., Chaudhry Y., Bailey D., Goodfellow I. 2010; Development of an optimized RNA-based murine norovirus reverse genetics system. J Virol Methods 169:112–118 [View Article][PubMed]
    [Google Scholar]
  114. Zeitler C. E., Estes M. K., Venkataram Prasad B. V. 2006; X-ray crystallographic structure of the Norwalk virus protease at 1.5-Å resolution. J Virol 80:5050–5058 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059634-0
Loading
/content/journal/jgv/10.1099/vir.0.059634-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed