1887

Abstract

Noroviruses are small, positive-sense RNA viruses within the family , and are now accepted widely as a major cause of acute gastroenteritis in both developed and developing countries. Despite their impact, our understanding of the life cycle of noroviruses has lagged behind that of other RNA viruses due to the inability to culture human noroviruses (HuNVs). Our knowledge of norovirus biology has improved significantly over the past decade as a result of numerous technological advances. The use of a HuNV replicon, improved biochemical and cell-based assays, combined with the discovery of a murine norovirus capable of replication in cell culture, has improved greatly our understanding of the molecular mechanisms of norovirus genome translation and replication, as well as the interaction with host cell processes. In this review, the current state of knowledge of the intracellular life of noroviruses is discussed with particular emphasis on the mechanisms of viral gene expression and viral genome replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059634-0
2014-02-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/278.html?itemId=/content/journal/jgv/10.1099/vir.0.059634-0&mimeType=html&fmt=ahah

References

  1. Alonso C. , Oviedo J. M. , Martín-Alonso J. M. , Díaz E. , Boga J. A. , Parra F. . ( 1998; ). Programmed cell death in the pathogenesis of rabbit hemorrhagic disease. . Arch Virol 143:, 321–332. [CrossRef] [PubMed]
    [Google Scholar]
  2. Asanaka M. , Atmar R. L. , Ruvolo V. , Crawford S. E. , Neill F. H. , Estes M. K. . ( 2005; ). Replication and packaging of Norwalk virus RNA in cultured mammalian cells. . Proc Natl Acad Sci U S A 102:, 10327–10332. [CrossRef] [PubMed]
    [Google Scholar]
  3. Atmar R. L. , Bernstein D. I. , Harro C. D. , Al-Ibrahim M. S. , Chen W. H. , Ferreira J. , Estes M. K. , Graham D. Y. , Opekun A. R. . & other authors ( 2011; ). Norovirus vaccine against experimental human Norwalk virus illness. . N Engl J Med 365:, 2178–2187. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bailey D. , Kaiser W. J. , Hollinshead M. , Moffat K. , Chaudhry Y. , Wileman T. , Sosnovtsev S. V. , Goodfellow I. G. . ( 2010a; ). Feline calicivirus p32, p39 and p30 proteins localize to the endoplasmic reticulum to initiate replication complex formation. . J Gen Virol 91:, 739–749. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bailey D. , Karakasiliotis I. , Vashist S. , Chung L. M. W. , Rees J. , McFadden N. , Benson A. , Yarovinsky F. , Simmonds P. , Goodfellow I. . ( 2010b; ). Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. . J Virol 84:, 2859–2870. [CrossRef] [PubMed]
    [Google Scholar]
  6. Belliot G. , Sosnovtsev S. V. , Chang K.-O. , Babu V. , Uche U. , Arnold J. J. , Cameron C. E. , Green K. Y. . ( 2005; ). Norovirus proteinase-polymerase and polymerase are both active forms of RNA-dependent RNA polymerase. . J Virol 79:, 2393–2403. [CrossRef] [PubMed]
    [Google Scholar]
  7. Belov G. A. , van Kuppeveld F. J. M. . ( 2012; ). (+)RNA viruses rewire cellular pathways to build replication organelles. . Curr Opin Virol 2:, 740–747. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bertolotti-Ciarlet A. , White L. J. , Chen R. , Prasad B. V. V. , Estes M. K. . ( 2002; ). Structural requirements for the assembly of Norwalk virus-like particles. . J Virol 76:, 4044–4055. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bok K. , Green K. Y. . ( 2012; ). Norovirus gastroenteritis in immunocompromised patients. . N Engl J Med 367:, 2126–2132. [CrossRef] [PubMed]
    [Google Scholar]
  10. Bok K. , Prikhodko V. G. , Green K. Y. , Sosnovtsev S. V. . ( 2009; ). Apoptosis in murine norovirus-infected RAW264.7 cells is associated with downregulation of survivin. . J Virol 83:, 3647–3656. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bull R. A. , Hyde J. , Mackenzie J. M. , Hansman G. S. , Oka T. , Takeda N. , White P. A. . ( 2011; ). Comparison of the replication properties of murine and human calicivirus RNA-dependent RNA polymerases. . Virus Genes 42:, 16–27. [CrossRef] [PubMed]
    [Google Scholar]
  12. Centers for Disease Control and Prevention (CDC) ( 2002; ). Outbreak of acute gastroenteritis associated with Norwalk-like viruses among British military personnel – Afghanistan, May 2002. . MMWR Morb Mortal Wkly Rep 51:, 477–479.[PubMed]
    [Google Scholar]
  13. Chan W. K. Y. , Lee K. W. , Fan T. W. . ( 2010; ). Pneumatosis intestinalis in a child with nephrotic syndrome and norovirus gastroenteritis. . Pediatr Nephrol 25:, 1563–1566. [CrossRef] [PubMed]
    [Google Scholar]
  14. Chang K.-O. . ( 2009; ). Role of cholesterol pathways in norovirus replication. . J Virol 83:, 8587–8595. [CrossRef] [PubMed]
    [Google Scholar]
  15. Chang K.-O. , George D. W. . ( 2007; ). Interferons and ribavirin effectively inhibit Norwalk virus replication in replicon-bearing cells. . J Virol 81:, 12111–12118. [CrossRef] [PubMed]
    [Google Scholar]
  16. Chang K.-O. , Sosnovtsev S. V. , Belliot G. , King A. D. , Green K. Y. . ( 2006; ). Stable expression of a Norwalk virus RNA replicon in a human hepatoma cell line. . Virology 353:, 463–473. [CrossRef] [PubMed]
    [Google Scholar]
  17. Chaudhry Y. , Nayak A. , Bordeleau M.-E. , Tanaka J. , Pelletier J. , Belsham G. J. , Roberts L. O. , Goodfellow I. G. . ( 2006; ). Caliciviruses differ in their functional requirements for eIF4F components. . J Biol Chem 281:, 25315–25325. [CrossRef] [PubMed]
    [Google Scholar]
  18. Chaudhry Y. , Skinner M. A. , Goodfellow I. G. . ( 2007; ). Recovery of genetically defined murine norovirus in tissue culture by using a fowlpox virus expressing T7 RNA polymerase. . J Gen Virol 88:, 2091–2100. [CrossRef] [PubMed]
    [Google Scholar]
  19. Cheetham S. , Souza M. , Meulia T. , Grimes S. , Han M. G. , Saif L. J. . ( 2006; ). Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. . J Virol 80:, 10372–10381. [CrossRef] [PubMed]
    [Google Scholar]
  20. Clarke I. N. , Lambden P. R. . ( 2000; ). Organization and expression of calicivirus genes. . J Infect Dis 181: (Suppl 2), S309–S316. [CrossRef] [PubMed]
    [Google Scholar]
  21. Daughenbaugh K. F. , Fraser C. S. , Hershey J. W. B. , Hardy M. E. . ( 2003; ). The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. . EMBO J 22:, 2852–2859. [CrossRef] [PubMed]
    [Google Scholar]
  22. Dodd D. A. , Giddings T. H. Jr , Kirkegaard K. . ( 2001; ). Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. . J Virol 75:, 8158–8165. [CrossRef] [PubMed]
    [Google Scholar]
  23. Donaldson E. F. , Lindesmith L. C. , Lobue A. D. , Baric R. S. . ( 2008; ). Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. . Immunol Rev 225:, 190–211. [CrossRef] [PubMed]
    [Google Scholar]
  24. Donaldson E. F. , Lindesmith L. C. , Lobue A. D. , Baric R. S. . ( 2010; ). Viral shape-shifting: norovirus evasion of the human immune system. . Nat Rev Microbiol 8:, 231–241. [CrossRef] [PubMed]
    [Google Scholar]
  25. Duizer E. , Schwab K. J. , Neill F. H. , Atmar R. L. , Koopmans M. P. G. , Estes M. K. . ( 2004; ). Laboratory efforts to cultivate noroviruses. . J Gen Virol 85:, 79–87. [CrossRef] [PubMed]
    [Google Scholar]
  26. Eden J.-S. , Sharpe L. J. , White P. A. , Brown A. J. . ( 2011; ). Norovirus RNA-dependent RNA polymerase is phosphorylated by an important survival kinase, Akt. . J Virol 85:, 10894–10898. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ettayebi K. , Hardy M. E. . ( 2003; ). Norwalk virus nonstructural protein p48 forms a complex with the SNARE regulator VAP-A and prevents cell surface expression of vesicular stomatitis virus G protein. . J Virol 77:, 11790–11797. [CrossRef] [PubMed]
    [Google Scholar]
  28. Farkas T. , Nakajima S. , Sugieda M. , Deng X. , Zhong W. , Jiang X. . ( 2005; ). Seroprevalence of noroviruses in swine. . J Clin Microbiol 43:, 657–661. [CrossRef] [PubMed]
    [Google Scholar]
  29. Fernandez-Vega V. , Sosnovtsev S. V. , Belliot G. , King A. D. , Mitra T. , Gorbalenya A. , Green K. Y. . ( 2004; ). Norwalk virus N-terminal nonstructural protein is associated with disassembly of the Golgi complex in transfected cells. . J Virol 78:, 4827–4837. [CrossRef] [PubMed]
    [Google Scholar]
  30. Firth A. E. , Brierley I. . ( 2012; ). Non-canonical translation in RNA viruses. . J Gen Virol 93:, 1385–1409. [CrossRef] [PubMed]
    [Google Scholar]
  31. Fitzgerald K. D. , Semler B. L. . ( 2009; ). Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. . Biochim Biophys Acta 1789:, 518–528. [CrossRef] [PubMed]
    [Google Scholar]
  32. Fuentes C. , Bosch A. , Pintó R. M. , Guix S. . ( 2012; ). Identification of human astrovirus genome-linked protein (VPg) essential for virus infectivity. . J Virol 86:, 10070–10078. [CrossRef] [PubMed]
    [Google Scholar]
  33. Furman L. M. , Maaty W. S. , Petersen L. K. , Ettayebi K. , Hardy M. E. , Bothner B. . ( 2009; ). Cysteine protease activation and apoptosis in Murine norovirus infection. . Virol J 6:, 139. [CrossRef] [PubMed]
    [Google Scholar]
  34. Gerondopoulos A. , Jackson T. , Monaghan P. , Doyle N. , Roberts L. O. . ( 2010; ). Murine norovirus-1 cell entry is mediated through a non-clathrin-, non-caveolae-, dynamin- and cholesterol-dependent pathway. . J Gen Virol 91:, 1428–1438. [CrossRef] [PubMed]
    [Google Scholar]
  35. Glass R. I. , Parashar U. D. , Estes M. K. . ( 2009; ). Norovirus gastroenteritis. . N Engl J Med 361:, 1776–1785. [CrossRef] [PubMed]
    [Google Scholar]
  36. Goodfellow I. . ( 2011; ). The genome-linked protein VPg of vertebrate viruses – a multifaceted protein. . Curr Opin Virol 1:, 355–362. [CrossRef] [PubMed]
    [Google Scholar]
  37. Goodfellow I. , Chaudhry Y. , Richardson A. , Meredith J. , Almond J. W. , Barclay W. , Evans D. J. . ( 2000; ). Identification of a cis-acting replication element within the poliovirus coding region. . J Virol 74:, 4590–4600. [CrossRef] [PubMed]
    [Google Scholar]
  38. Goodfellow I. G. , Kerrigan D. , Evans D. J. . ( 2003; ). Structure and function analysis of the poliovirus cis-acting replication element (CRE). . RNA 9:, 124–137. [CrossRef] [PubMed]
    [Google Scholar]
  39. Goodfellow I. , Chaudhry Y. , Gioldasi I. , Gerondopoulos A. , Natoni A. , Labrie L. , Laliberté J.-F. , Roberts L. . ( 2005; ). Calicivirus translation initiation requires an interaction between VPg and eIF4E. . EMBO Rep 6:, 968–972. [CrossRef] [PubMed]
    [Google Scholar]
  40. Green K. Y. , Mory A. , Fogg M. H. , Weisberg A. , Belliot G. , Wagner M. , Mitra T. , Ehrenfeld E. , Cameron C. E. , Sosnovtsev S. V. . ( 2002; ). Isolation of enzymatically active replication complexes from feline calicivirus-infected cells. . J Virol 76:, 8582–8595. [CrossRef] [PubMed]
    [Google Scholar]
  41. Guix S. , Asanaka M. , Katayama K. , Crawford S. E. , Neill F. H. , Atmar R. L. , Estes M. K. . ( 2007; ). Norwalk virus RNA is infectious in mammalian cells. . J Virol 81:, 12238–12248. [CrossRef] [PubMed]
    [Google Scholar]
  42. Gutiérrez-Escolano A. L. , Brito Z. U. , del Angel R. M. , Jiang X. . ( 2000a; ). Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. . J Virol 74:, 8558–8562. [CrossRef] [PubMed]
    [Google Scholar]
  43. Gutiérrez-Escolano A. L. , Brito Z. U. , del Angel R. M. , Jiang X. . ( 2000b; ). Interaction of cellular proteins with the 5′ end of Norwalk virus genomic RNA. . J Virol 74:, 8558–8562. [CrossRef] [PubMed]
    [Google Scholar]
  44. Gutiérrez-Escolano A. L. , Vázquez-Ochoa M. , Escobar-Herrera J. , Hernández-Acosta J. . ( 2003; ). La, PTB, and PAB proteins bind to the 3′ untranslated region of Norwalk virus genomic RNA. . Biochem Biophys Res Commun 311:, 759–766. [CrossRef] [PubMed]
    [Google Scholar]
  45. Hall A. J. , Lopman B. A. , Payne D. C. , Patel M. M. , Gastañaduy P. A. , Vinjé J. , Parashar U. D. . ( 2013; ). Norovirus disease in the United States. . Emerg Infect Dis 19:, 1198–1205. [CrossRef] [PubMed]
    [Google Scholar]
  46. Herbert T. P. , Brierley I. , Brown T. D. . ( 1997; ). Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. . J Gen Virol 78:, 1033–1040.[PubMed]
    [Google Scholar]
  47. Högbom M. , Jäger K. , Robel I. , Unge T. , Rohayem J. . ( 2009; ). The active form of the norovirus RNA-dependent RNA polymerase is a homodimer with cooperative activity. . J Gen Virol 90:, 281–291. [CrossRef] [PubMed]
    [Google Scholar]
  48. Hyde J. L. , Mackenzie J. M. . ( 2010; ). Subcellular localization of the MNV-1 ORF1 proteins and their potential roles in the formation of the MNV-1 replication complex. . Virology 406:, 138–148. [CrossRef] [PubMed]
    [Google Scholar]
  49. Hyde J. L. , Sosnovtsev S. V. , Green K. Y. , Wobus C. , Virgin H. W. , Mackenzie J. M. . ( 2009; ). Mouse norovirus replication is associated with virus-induced vesicle clusters originating from membranes derived from the secretory pathway. . J Virol 83:, 9709–9719. [CrossRef] [PubMed]
    [Google Scholar]
  50. Hyde J. L. , Gillespie L. K. , Mackenzie J. M. . ( 2012; ). Mouse norovirus 1 utilizes the cytoskeleton network to establish localization of the replication complex proximal to the microtubule organizing center. . J Virol 86:, 4110–4122. [CrossRef] [PubMed]
    [Google Scholar]
  51. Ito S. , Takeshita S. , Nezu A. , Aihara Y. , Usuku S. , Noguchi Y. , Yokota S. . ( 2006; ). Norovirus-associated encephalopathy. . Pediatr Infect Dis J 25:, 651–652. [CrossRef] [PubMed]
    [Google Scholar]
  52. Jung K. , Wang Q. , Kim Y. , Scheuer K. , Zhang Z. , Shen Q. , Chang K.-O. , Saif L. J. . ( 2012; ). The effects of simvastatin or interferon-α on infectivity of human norovirus using a gnotobiotic pig model for the study of antivirals. . PLoS ONE 7:, e41619. [CrossRef] [PubMed]
    [Google Scholar]
  53. Kaiser W. J. , Chaudhry Y. , Sosnovtsev S. V. , Goodfellow I. G. . ( 2006; ). Analysis of protein–protein interactions in the feline calicivirus replication complex. . J Gen Virol 87:, 363–368. [CrossRef] [PubMed]
    [Google Scholar]
  54. Kapikian A. Z. . ( 2000; ). The discovery of the 27-nm Norwalk virus: an historic perspective. . J Infect Dis 181: (Suppl 2), S295–S302. [CrossRef] [PubMed]
    [Google Scholar]
  55. Karakasiliotis I. , Vashist S. , Bailey D. , Abente E. J. , Green K. Y. , Roberts L. O. , Sosnovtsev S. V. , Goodfellow I. G. . ( 2010; ). Polypyrimidine tract binding protein functions as a negative regulator of feline calicivirus translation. . PLoS ONE 5:, e9562. [CrossRef] [PubMed]
    [Google Scholar]
  56. Karst S. M. , Wobus C. E. , Lay M. , Davidson J. , Virgin H. W. IV . ( 2003; ). STAT1-dependent innate immunity to a Norwalk-like virus. . Science 299:, 1575–1578. [CrossRef] [PubMed]
    [Google Scholar]
  57. Kawai T. , Takahashi K. , Sato S. , Coban C. , Kumar H. , Kato H. , Ishii K. J. , Takeuchi O. , Akira S. . ( 2005; ). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. . Nat Immunol 6:, 981–988. [CrossRef] [PubMed]
    [Google Scholar]
  58. Kim M. J. , Kim Y.-J. , Lee J. H. , Lee J. S. , Kim J. H. , Cheon D. S. , Jeong H. S. , Koo H. H. , Sung K. W. . & other authors ( 2011; ). Norovirus: a possible cause of pneumatosis intestinalis. . J Pediatr Gastroenterol Nutr 52:, 314–318. [CrossRef] [PubMed]
    [Google Scholar]
  59. Kuyumcu-Martinez M. , Belliot G. , Sosnovtsev S. V. , Chang K.-O. , Green K. Y. , Lloyd R. E. . ( 2004; ). Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. . J Virol 78:, 8172–8182. [CrossRef] [PubMed]
    [Google Scholar]
  60. Leen E. N. , Baeza G. , Curry S. . ( 2012; ). Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation. . PLoS ONE 7:, e38723. [CrossRef] [PubMed]
    [Google Scholar]
  61. Leen E. N. , Kwok K. Y. R. , Birtley J. R. , Simpson P. J. , Subba-Reddy C. V. , Chaudhry Y. , Sosnovtsev S. V. , Green K. Y. , Prater S. N. . & other authors ( 2013; ). Structures of the compact helical core domains of feline calicivirus and murine norovirus VPg proteins. . J Virol 87:, 5318–5330. [CrossRef] [PubMed]
    [Google Scholar]
  62. Léonard S. , Plante D. , Wittmann S. , Daigneault N. , Fortin M. G. , Laliberté J. F. . ( 2000; ). Complex formation between potyvirus VPg and translation eukaryotic initiation factor 4E correlates with virus infectivity. . J Virol 74:, 7730–7737. [CrossRef] [PubMed]
    [Google Scholar]
  63. Liu Y. , Wimmer E. , Paul A. V. . ( 2009; ). Cis-acting RNA elements in human and animal plus-strand RNA viruses. . Biochim Biophys Acta 1789:, 495–517. [CrossRef] [PubMed]
    [Google Scholar]
  64. López-Manríquez E. , Vashist S. , Ureña L. , Goodfellow I. , Chavez P. , Mora-Heredia J. E. , Cancio-Lonches C. , Garrido E. , Gutiérrez-Escolano A. L. . ( 2013; ). Norovirus genome circularization and efficient replication are facilitated by binding of PCBP2 and hnRNP A1. . J Virol 87:, 11371–11387. [CrossRef] [PubMed]
    [Google Scholar]
  65. McCartney S. A. , Thackray L. B. , Gitlin L. , Gilfillan S. , Virgin H. W. , Colonna M. . ( 2008; ). MDA-5 recognition of a murine norovirus. . PLoS Pathog 4:, e1000108. [CrossRef] [PubMed]
    [Google Scholar]
  66. McCormick C. J. , Salim O. , Lambden P. R. , Clarke I. N. . ( 2008; ). Translation termination reinitiation between open reading frame 1 (ORF1) and ORF2 enables capsid expression in a bovine norovirus without the need for production of viral subgenomic RNA. . J Virol 82:, 8917–8921. [CrossRef] [PubMed]
    [Google Scholar]
  67. McFadden N. , Bailey D. , Carrara G. , Benson A. , Chaudhry Y. , Shortland A. , Heeney J. , Yarovinsky F. , Simmonds P. . & other authors ( 2011; ). Norovirus regulation of the innate immune response occurs via the product of the alternative open reading frame 4. . PLoS Pathog 7:, e1002413. [CrossRef] [PubMed]
    [Google Scholar]
  68. Medici M. C. , Abelli L. A. , Dodi I. , Dettori G. , Chezzi C. . ( 2010; ). Norovirus RNA in the blood of a child with gastroenteritis and convulsions – a case report. . J Clin Virol 48:, 147–149. [CrossRef] [PubMed]
    [Google Scholar]
  69. Mesquita J. R. , Barclay L. , Nascimento M. S. J. , Vinjé J. . ( 2010; ). Novel norovirus in dogs with diarrhea. . Emerg Infect Dis 16:, 980–982. [CrossRef] [PubMed]
    [Google Scholar]
  70. Mesquita J. R. , Costantini V. P. , Cannon J. L. , Lin S.-C. , Nascimento M. S. J. , Vinjé J. . ( 2013; ). Presence of antibodies against genogroup VI norovirus in humans. . Virol J 10:, 176. [CrossRef] [PubMed]
    [Google Scholar]
  71. Meyers G. . ( 2007; ). Characterization of the sequence element directing translation reinitiation in RNA of the calicivirus rabbit hemorrhagic disease virus. . J Virol 81:, 9623–9632. [CrossRef] [PubMed]
    [Google Scholar]
  72. Morales M. , Bárcena J. , Ramírez M. A. , Boga J. A. , Parra F. , Torres J. M. . ( 2004; ). Synthesis in vitro of rabbit hemorrhagic disease virus subgenomic RNA by internal initiation on (–)sense genomic RNA: mapping of a subgenomic promoter. . J Biol Chem 279:, 17013–17018. [CrossRef] [PubMed]
    [Google Scholar]
  73. Mumphrey S. M. , Changotra H. , Moore T. N. , Heimann-Nichols E. R. , Wobus C. E. , Reilly M. J. , Moghadamfalahi M. , Shukla D. , Karst S. M. . ( 2007; ). Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. . J Virol 81:, 3251–3263. [CrossRef] [PubMed]
    [Google Scholar]
  74. Nagy P. D. , Pogany J. . ( 2011; ). The dependence of viral RNA replication on co-opted host factors. . Nat Rev Microbiol 10:, 137–149.[PubMed]
    [Google Scholar]
  75. Napthine S. , Lever R. A. , Powell M. L. , Jackson R. J. , Brown T. D. K. , Brierley I. . ( 2009; ). Expression of the VP2 protein of murine norovirus by a translation termination-reinitiation strategy. . PLoS ONE 4:, e8390. [CrossRef] [PubMed]
    [Google Scholar]
  76. Papafragkou E. , Hewitt J. , Park G. W. , Greening G. , Vinjé J. . ( 2013; ). Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. . PLoS ONE 8:, e63485. [CrossRef] [PubMed]
    [Google Scholar]
  77. Patel M. M. , Widdowson M.-A. , Glass R. I. , Akazawa K. , Vinjé J. , Parashar U. D. . ( 2008; ). Systematic literature review of role of noroviruses in sporadic gastroenteritis. . Emerg Infect Dis 14:, 1224–1231. [CrossRef] [PubMed]
    [Google Scholar]
  78. Perry J. W. , Wobus C. E. . ( 2010; ). Endocytosis of murine norovirus 1 into murine macrophages is dependent on dynamin II and cholesterol. . J Virol 84:, 6163–6176. [CrossRef] [PubMed]
    [Google Scholar]
  79. Pettersson R. F. , Ambros V. , Baltimore D. . ( 1978; ). Identification of a protein linked to nascent poliovirus RNA and to the polyuridylic acid of negative-strand RNA. . J Virol 27:, 357–365.[PubMed]
    [Google Scholar]
  80. Pletneva M. A. , Sosnovtsev S. V. , Green K. Y. . ( 2001; ). The genome of hawaii virus and its relationship with other members of the caliciviridae. . Virus Genes 23:, 5–16. [CrossRef] [PubMed]
    [Google Scholar]
  81. Prasad B. V. , Rothnagel R. , Jiang X. , Estes M. K. . ( 1994; ). Three-dimensional structure of baculovirus-expressed Norwalk virus capsids. . J Virol 68:, 5117–5125.[PubMed]
    [Google Scholar]
  82. Rohayem J. , Robel I. , Jäger K. , Scheffler U. , Rudolph W. . ( 2006; ). Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. . J Virol 80:, 7060–7069. [CrossRef] [PubMed]
    [Google Scholar]
  83. Rondy M. , Koopmans M. , Rotsaert C. , Van Loon T. , Beljaars B. , Van Dijk G. , Siebenga J. , Svraka S. , Rossen J. W. A. . & other authors ( 2011; ). Norovirus disease associated with excess mortality and use of statins: a retrospective cohort study of an outbreak following a pilgrimage to Lourdes. . Epidemiol Infect 139:, 453–463. [CrossRef] [PubMed]
    [Google Scholar]
  84. Sandoval-Jaime C. , Gutiérrez-Escolano A. L. . ( 2009; ). Cellular proteins mediate 5′–3′ end contacts of Norwalk virus genomic RNA. . Virology 387:, 322–330. [CrossRef] [PubMed]
    [Google Scholar]
  85. Seth R. B. , Sun L. , Ea C.-K. , Chen Z. J. . ( 2005; ). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. . Cell 122:, 669–682. [CrossRef] [PubMed]
    [Google Scholar]
  86. Sharp T. M. , Guix S. , Katayama K. , Crawford S. E. , Estes M. K. . ( 2010; ). Inhibition of cellular protein secretion by norwalk virus nonstructural protein p22 requires a mimic of an endoplasmic reticulum export signal. . PLoS ONE 5:, e13130. [CrossRef] [PubMed]
    [Google Scholar]
  87. Sharp T. M. , Crawford S. E. , Ajami N. J. , Neill F. H. , Atmar R. L. , Katayama K. , Utama B. , Estes M. K. . ( 2012; ). Secretory pathway antagonism by calicivirus homologues of Norwalk virus nonstructural protein p22 is restricted to noroviruses. . Virol J 9:, 181. [CrossRef] [PubMed]
    [Google Scholar]
  88. Simmonds P. , Karakasiliotis I. , Bailey D. , Chaudhry Y. , Evans D. J. , Goodfellow I. G. . ( 2008; ). Bioinformatic and functional analysis of RNA secondary structure elements among different genera of human and animal caliciviruses. . Nucleic Acids Res 36:, 2530–2546. [CrossRef] [PubMed]
    [Google Scholar]
  89. Someya Y. , Takeda N. , Miyamura T. . ( 2002; ). Identification of active-site amino acid residues in the Chiba virus 3C-like protease. . J Virol 76:, 5949–5958. [CrossRef] [PubMed]
    [Google Scholar]
  90. Someya Y. , Takeda N. , Wakita T. . ( 2008; ). Saturation mutagenesis reveals that GLU54 of norovirus 3C-like protease is not essential for the proteolytic activity. . J Biochem 144:, 771–780. [CrossRef] [PubMed]
    [Google Scholar]
  91. Sosnovtsev S. , Green K. Y. . ( 1995; ). RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VpG for infectivity. . Virology 210:, 383–390. [CrossRef] [PubMed]
    [Google Scholar]
  92. Sosnovtsev S. V. , Prikhod’ko E. A. , Belliot G. , Cohen J. I. , Green K. Y. . ( 2003; ). Feline calicivirus replication induces apoptosis in cultured cells. . Virus Res 94:, 1–10. [CrossRef] [PubMed]
    [Google Scholar]
  93. Sosnovtsev S. V. , Belliot G. , Chang K.-O. , Onwudiwe O. , Green K. Y. . ( 2005; ). Feline calicivirus VP2 is essential for the production of infectious virions. . J Virol 79:, 4012–4024. [CrossRef] [PubMed]
    [Google Scholar]
  94. Sosnovtsev S. V. , Belliot G. , Chang K.-O. , Prikhodko V. G. , Thackray L. B. , Wobus C. E. , Karst S. M. , Virgin H. W. , Green K. Y. . ( 2006; ). Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. . J Virol 80:, 7816–7831. [CrossRef] [PubMed]
    [Google Scholar]
  95. Subba-Reddy C. V. , Goodfellow I. , Kao C. C. . ( 2011; ). VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. . J Virol 85:, 13027–13037. [CrossRef] [PubMed]
    [Google Scholar]
  96. Subba-Reddy C. V. , Yunus M. A. , Goodfellow I. G. , Kao C. C. . ( 2012; ). Norovirus RNA synthesis is modulated by an interaction between the viral RNA-dependent RNA polymerase and the major capsid protein, VP1. . J Virol 86:, 10138–10149. [CrossRef] [PubMed]
    [Google Scholar]
  97. Takanashi S. , Saif L. J. , Hughes J. H. , Meulia T. , Jung K. , Scheuer K. A. , Wang Q. . ( 2013; ). Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. . Arch Virol. doi: 10.1007/s00705-013-1806-4 [Epub ahead of print]. [CrossRef] [PubMed]
    [Google Scholar]
  98. Taube S. , Perry J. W. , Yetming K. , Patel S. P. , Auble H. , Shu L. , Nawar H. F. , Lee C. H. , Connell T. D. . & other authors ( 2009; ). Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. . J Virol 83:, 4092–4101. [CrossRef] [PubMed]
    [Google Scholar]
  99. Taube S. , Perry J. W. , McGreevy E. , Yetming K. , Perkins C. , Henderson K. , Wobus C. E. . ( 2012; ). Murine noroviruses bind glycolipid and glycoprotein attachment receptors in a strain-dependent manner. . J Virol 86:, 5584–5593. [CrossRef] [PubMed]
    [Google Scholar]
  100. Taube S. , Kolawole A. O. , Höhne M. , Wilkinson J. E. , Handley S. A. , Perry J. W. , Thackray L. B. , Akkina R. , Wobus C. E. . ( 2013; ). A mouse model for human norovirus. . MBio 4:, e00450-13. [CrossRef] [PubMed]
    [Google Scholar]
  101. Thackray L. B. , Duan E. , Lazear H. M. , Kambal A. , Schreiber R. D. , Diamond M. S. , Virgin H. W. . ( 2012; ). Critical role for interferon regulatory factor 3 (IRF-3) and IRF-7 in type I interferon-mediated control of murine norovirus replication. . J Virol 86:, 13515–13523. [CrossRef] [PubMed]
    [Google Scholar]
  102. Thorne L. , Bailey D. , Goodfellow I. . ( 2012; ). High-resolution functional profiling of the norovirus genome. . J Virol 86:, 11441–11456. [CrossRef] [PubMed]
    [Google Scholar]
  103. Troeger H. , Loddenkemper C. , Schneider T. , Schreier E. , Epple H.-J. , Zeitz M. , Fromm M. , Schulzke J.-D. . ( 2009; ). Structural and functional changes of the duodenum in human norovirus infection. . Gut 58:, 1070–1077. [CrossRef] [PubMed]
    [Google Scholar]
  104. Turcios-Ruiz R. M. , Axelrod P. , St John K. , Bullitt E. , Donahue J. , Robinson N. , Friss H. E. . ( 2008; ). Outbreak of necrotizing enterocolitis caused by norovirus in a neonatal intensive care unit. . J Pediatr 153:, 339–344. [CrossRef] [PubMed]
    [Google Scholar]
  105. Vashist S. , Bailey D. , Putics A. , Goodfellow I. . ( 2009; ). Model systems for the study of human norovirus biology. . Future Virol 4:, 353–367. [CrossRef] [PubMed]
    [Google Scholar]
  106. Vashist S. , Ureña L. , Chaudhry Y. , Goodfellow I. . ( 2012; ). Identification of RNA–protein interaction networks involved in the norovirus life cycle. . J Virol 86:, 11977–11990. [CrossRef] [PubMed]
    [Google Scholar]
  107. Victoria M. , Colina R. , Miagostovich M. P. , Leite J. P. , Cristina J. . ( 2009; ). Phylogenetic prediction of cis-acting elements: a cre-like sequence in norovirus genome. ? BMC Res Notes 2:, 176.[CrossRef]
    [Google Scholar]
  108. Vongpunsawad S. , Venkataram Prasad B. V. , Estes M. K. . ( 2013; ). Norwalk virus minor capsid protein VP2 associates within the VP1 shell domain. . J Virol 87:, 4818–4825. [CrossRef] [PubMed]
    [Google Scholar]
  109. Ward V. K. , McCormick C. J. , Clarke I. N. , Salim O. , Wobus C. E. , Thackray L. B. , Virgin H. W. IV , Lambden P. R. . ( 2007; ). Recovery of infectious murine norovirus using pol II-driven expression of full-length cDNA. . Proc Natl Acad Sci U S A 104:, 11050–11055. [CrossRef] [PubMed]
    [Google Scholar]
  110. Wells S. E. , Hillner P. E. , Vale R. D. , Sachs A. B. . ( 1998; ). Circularization of mRNA by eukaryotic translation initiation factors. . Mol Cell 2:, 135–140. [CrossRef] [PubMed]
    [Google Scholar]
  111. Willcocks M. M. , Carter M. J. , Roberts L. O. . ( 2004; ). Cleavage of eukaryotic initiation factor eIF4G and inhibition of host-cell protein synthesis during feline calicivirus infection. . J Gen Virol 85:, 1125–1130. [CrossRef] [PubMed]
    [Google Scholar]
  112. Wobus C. E. , Karst S. M. , Thackray L. B. , Chang K.-O. , Sosnovtsev S. V. , Belliot G. , Krug A. , Mackenzie J. M. , Green K. Y. , Virgin H. W. . ( 2004; ). Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. . PLoS Biol 2:, e432. [CrossRef] [PubMed]
    [Google Scholar]
  113. Yunus M. A. , Chung L. M. W. , Chaudhry Y. , Bailey D. , Goodfellow I. . ( 2010; ). Development of an optimized RNA-based murine norovirus reverse genetics system. . J Virol Methods 169:, 112–118. [CrossRef] [PubMed]
    [Google Scholar]
  114. Zeitler C. E. , Estes M. K. , Venkataram Prasad B. V. . ( 2006; ). X-ray crystallographic structure of the Norwalk virus protease at 1.5-Å resolution. . J Virol 80:, 5050–5058. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059634-0
Loading
/content/journal/jgv/10.1099/vir.0.059634-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error