1887

Abstract

Mosquito-borne flaviviruses include a large group of important human medical pathogens. Several chimaeric flaviviruses have been constructed, and show potential for vaccine development. Although Japanese encephalitis virus (JEV) live vaccine SA14-14-2 has been widely used with ideal safety and efficacy profiles, no chimaeric flavivirus based on the JEV vaccine has been described to date. Based on the reverse genetic system of the JEV vaccine SA14-14-2, a novel live chimaeric flavivirus carrying the protective antigens of West Nile virus (WNV) was constructed and recovered in this study. The resulting chimaera (ChinWNV) replicated efficiently in both mammalian and mosquito cells and possessed genetic stability after serial passaging. ChinWNV exhibited a small-plaque phenotype, and its replication was significantly restricted in mouse peripheral blood and brain compared with parental WNV. Importantly, ChinWNV was highly attenuated with regard to both neurovirulence and neuroinvasiveness in mice. Furthermore, a single ChinWNV immunization stimulated robust WNV-specific adaptive immune responses in mice, conferring significant protection against lethal WNV infection. Our results demonstrate that chimaeric flaviviruses based on the JEV vaccine can serve as a powerful platform for vaccine development, and that ChinWNV represents a potential WNV vaccine candidate that merits further development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059436-0
2013-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2700.html?itemId=/content/journal/jgv/10.1099/vir.0.059436-0&mimeType=html&fmt=ahah

References

  1. Alonso-Padilla J., Jiménez de Oya N., Blázquez A. B., Escribano-Romero E., Escribano J. M., Saiz J. C.. ( 2011;). Recombinant West Nile virus envelope protein E and domain III expressed in insect larvae protects mice against West Nile disease. . Vaccine 29:, 1830–1835. [CrossRef][PubMed]
    [Google Scholar]
  2. Arroyo J., Miller C. A., Catalan J., Monath T. P.. ( 2001;). Yellow fever vector live-virus vaccines: West Nile virus vaccine development. . Trends Mol Med 7:, 350–354. [CrossRef][PubMed]
    [Google Scholar]
  3. Arroyo J., Miller C., Catalan J., Myers G. A., Ratterree M. S., Trent D. W., Monath T. P.. ( 2004;). ChimeriVax-West Nile virus live-attenuated vaccine: preclinical evaluation of safety, immunogenicity, and efficacy. . J Virol 78:, 12497–12507. [CrossRef][PubMed]
    [Google Scholar]
  4. Biedenbender R., Bevilacqua J., Gregg A. M., Watson M., Dayan G.. ( 2011;). Phase II, randomized, double-blind, placebo-controlled, multicenter study to investigate the immunogenicity and safety of a West Nile virus vaccine in healthy adults. . J Infect Dis 203:, 75–84. [CrossRef][PubMed]
    [Google Scholar]
  5. Bista M. B., Banerjee M. K., Shin S. H., Tandan J. B., Kim M. H., Sohn Y. M., Ohrr H. C., Tang J. L., Halstead S. B.. ( 2001;). Efficacy of single-dose SA 14-14-2 vaccine against Japanese encephalitis: a case control study. . Lancet 358:, 791–795. [CrossRef][PubMed]
    [Google Scholar]
  6. Bray M., Lai C. J.. ( 1991;). Construction of intertypic chimeric dengue viruses by substitution of structural protein genes. . Proc Natl Acad Sci U S A 88:, 10342–10346. [CrossRef][PubMed]
    [Google Scholar]
  7. Centers for Disease Control and Prevention (CDC) ( 2012;). West Nile virus disease and other arboviral diseases – United States, 2011. . MMWR Morb Mortal Wkly Rep 61:, 510–514. [CrossRef][PubMed]
    [Google Scholar]
  8. Chambers T. J., Nestorowicz A., Mason P. W., Rice C. M.. ( 1999;). Yellow fever/Japanese encephalitis chimeric viruses: construction and biological properties. . J Virol 73:, 3095–3101.[PubMed]
    [Google Scholar]
  9. Chang D. C., Liu W. J., Anraku I., Clark D. C., Pollitt C. C., Suhrbier A., Hall R. A., Khromykh A. A.. ( 2008;). Single-round infectious particles enhance immunogenicity of a DNA vaccine against West Nile virus. . Nat Biotechnol 26:, 571–577. [CrossRef][PubMed]
    [Google Scholar]
  10. Coutant F., Frenkiel M. P., Despres P., Charneau P.. ( 2008;). Protective antiviral immunity conferred by a nonintegrative lentiviral vector-based vaccine. . PLoS ONE 3:, e3973. [CrossRef][PubMed]
    [Google Scholar]
  11. Davis B. S., Chang G. J., Cropp B., Roehrig J. T., Martin D. A., Mitchell C. J., Bowen R., Bunning M. L.. ( 2001;). West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. . J Virol 75:, 4040–4047. [CrossRef][PubMed]
    [Google Scholar]
  12. Deng Y. Q., Dai J. X., Ji G. H., Jiang T., Wang H. J., Yang H. O., Tan W. L., Liu R., Yu M.. & other authors ( 2011;). A broadly flavivirus cross-neutralizing monoclonal antibody that recognizes a novel epitope within the fusion loop of E protein. . PLoS ONE 6:, e16059. [CrossRef][PubMed]
    [Google Scholar]
  13. Desprès P., Combredet C., Frenkiel M. P., Lorin C., Brahic M., Tangy F.. ( 2005;). Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. . J Infect Dis 191:, 207–214. [CrossRef][PubMed]
    [Google Scholar]
  14. Durbin A. P., Karron R. A., Sun W., Vaughn D. W., Reynolds M. J., Perreault J. R., Thumar B., Men R., Lai C. J.. & other authors ( 2001;). Attenuation and immunogenicity in humans of a live dengue virus type-4 vaccine candidate with a 30 nucleotide deletion in its 3′-untranslated region. . Am J Trop Med Hyg 65:, 405–413.[PubMed]
    [Google Scholar]
  15. Gatchalian S., Yao Y., Zhou B., Zhang L., Yoksan S., Kelly K., Neuzil K. M., Yaïch M., Jacobson J.. ( 2008;). Comparison of the immunogenicity and safety of measles vaccine administered alone or with live, attenuated Japanese encephalitis SA 14-14-2 vaccine in Philippine infants. . Vaccine 26:, 2234–2241. [CrossRef][PubMed]
    [Google Scholar]
  16. Guirakhoo F., Zhang Z. X., Chambers T. J., Delagrave S., Arroyo J., Barrett A. D., Monath T. P.. ( 1999;). Immunogenicity, genetic stability, and protective efficacy of a recombinant, chimeric yellow fever-Japanese encephalitis virus (ChimeriVax-JE) as a live, attenuated vaccine candidate against Japanese encephalitis. . Virology 257:, 363–372. [CrossRef][PubMed]
    [Google Scholar]
  17. Guirakhoo F., Weltzin R., Chambers T. J., Zhang Z. X., Soike K., Ratterree M., Arroyo J., Georgakopoulos K., Catalan J., Monath T. P.. ( 2000;). Recombinant chimeric yellow fever-dengue type 2 virus is immunogenic and protective in nonhuman primates. . J Virol 74:, 5477–5485. [CrossRef][PubMed]
    [Google Scholar]
  18. Hennessy S., Liu Z., Tsai T. F., Strom B. L., Wan C. M., Liu H. L., Wu T. X., Yu H. J., Liu Q. M.. & other authors ( 1996;). Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): a case–control study. . Lancet 347:, 1583–1586. [CrossRef][PubMed]
    [Google Scholar]
  19. Huang C. Y., Butrapet S., Pierro D. J., Chang G. J., Hunt A. R., Bhamarapravati N., Gubler D. J., Kinney R. M.. ( 2000;). Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. . J Virol 74:, 3020–3028. [CrossRef][PubMed]
    [Google Scholar]
  20. Iyer A. V., Pahar B., Boudreaux M. J., Wakamatsu N., Roy A. F., Chouljenko V. N., Baghian A., Apetrei C., Marx P. A., Kousoulas K. G.. ( 2009;). Recombinant vesicular stomatitis virus-based west Nile vaccine elicits strong humoral and cellular immune responses and protects mice against lethal challenge with the virulent West Nile virus strain LSU-AR01. . Vaccine 27:, 893–903. [CrossRef][PubMed]
    [Google Scholar]
  21. Kahler S. C.. ( 2003;). APHIS: West Nile virus vaccine safe for use. . J Am Vet Med Assoc 223:, 416–418.[PubMed]
    [Google Scholar]
  22. Kumar R., Tripathi P., Rizvi A.. ( 2009;). Effectiveness of one dose of SA 14-14-2 vaccine against Japanese encephalitis. . N Engl J Med 360:, 1465–1466. [CrossRef][PubMed]
    [Google Scholar]
  23. Ledgerwood J. E., Pierson T. C., Hubka S. A., Desai N., Rucker S., Gordon I. J., Enama M. E., Nelson S., Nason M.. & other authors ( 2011;). A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. . J Infect Dis 203:, 1396–1404. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee E., Stocks C. E., Amberg S. M., Rice C. M., Lobigs M.. ( 2000;). Mutagenesis of the signal sequence of yellow fever virus prM protein: enhancement of signalase cleavage in vitro is lethal for virus production. . J Virol 74:, 24–32. [CrossRef][PubMed]
    [Google Scholar]
  25. Li X. F., Jiang T., Yu X. D., Deng Y. Q., Zhao H., Zhu Q. Y., Qin E. D., Qin C. F.. ( 2010;). RNA elements within the 5′ untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication. . J Gen Virol 91:, 1218–1223. [CrossRef][PubMed]
    [Google Scholar]
  26. Lieberman M. M., Nerurkar V. R., Luo H., Cropp B., Carrion R. Jr, de la Garza M., Coller B. A., Clements D., Ogata S.. & other authors ( 2009;). Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. . Clin Vaccine Immunol 16:, 1332–1337. [CrossRef][PubMed]
    [Google Scholar]
  27. Lim C. K., Takasaki T., Kotaki A., Kurane I.. ( 2008;). Vero cell-derived inactivated West Nile (WN) vaccine induces protective immunity against lethal WN virus infection in mice and shows a facilitated neutralizing antibody response in mice previously immunized with Japanese encephalitis vaccine. . Virology 374:, 60–70. [CrossRef][PubMed]
    [Google Scholar]
  28. Martina B. E., van den Doel P., Koraka P., van Amerongen G., Spohn G., Haagmans B. L., Provacia L. B., Osterhaus A. D., Rimmelzwaan G. F.. ( 2011;). A recombinant influenza A virus expressing domain III of West Nile virus induces protective immune responses against influenza and West Nile virus. . PLoS ONE 6:, e18995. [CrossRef][PubMed]
    [Google Scholar]
  29. Minke J. M., Siger L., Karaca K., Austgen L., Gordy P., Bowen R., Renshaw R. W., Loosmore S., Audonnet J. C., Nordgren B.. ( 2004;). Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge. . Arch Virol Suppl. 221–230.[PubMed]
    [Google Scholar]
  30. Monath T. P., Guirakhoo F., Nichols R., Yoksan S., Schrader R., Murphy C., Blum P., Woodward S., McCarthy K.. & other authors ( 2003;). Chimeric live, attenuated vaccine against Japanese encephalitis (ChimeriVax-JE): phase 2 clinical trials for safety and immunogenicity, effect of vaccine dose and schedule, and memory response to challenge with inactivated Japanese encephalitis antigen. . J Infect Dis 188:, 1213–1230. [CrossRef][PubMed]
    [Google Scholar]
  31. Nelson M. H., Winkelmann E., Ma Y., Xia J., Mason P. W., Bourne N., Milligan G. N.. ( 2010;). Immunogenicity of RepliVAX WN, a novel single-cycle West Nile virus vaccine. . Vaccine 29:, 174–182. [CrossRef][PubMed]
    [Google Scholar]
  32. Ng T., Hathaway D., Jennings N., Champ D., Chiang Y. W., Chu H. J.. ( 2003;). Equine vaccine for West Nile virus. . Dev Biol (Basel) 114:, 221–227.[PubMed]
    [Google Scholar]
  33. Petersen L. R., Carson P. J., Biggerstaff B. J., Custer B., Borchardt S. M., Busch M. P.. ( 2012;). Estimated cumulative incidence of West Nile virus infection in US adults, 1999–2010. . Epidemiol Infect 28:, 1–5.[PubMed]
    [Google Scholar]
  34. Pizzi M.. ( 1950;). Sampling variation of the fifty percent end-point, determined by the Reed–Muench (Behrens) method. . Hum Biol 22:, 151–190.[PubMed]
    [Google Scholar]
  35. Pletnev A. G., Bray M., Huggins J., Lai C. J.. ( 1992;). Construction and characterization of chimeric tick-borne encephalitis/dengue type 4 viruses. . Proc Natl Acad Sci U S A 89:, 10532–10536. [CrossRef][PubMed]
    [Google Scholar]
  36. Pletnev A. G., Bray M., Hanley K. A., Speicher J., Elkins R.. ( 2001;). Tick-borne Langat/mosquito-borne dengue flavivirus chimera, a candidate live attenuated vaccine for protection against disease caused by members of the tick-borne encephalitis virus complex: evaluation in rhesus monkeys and in mosquitoes. . J Virol 75:, 8259–8267. [CrossRef][PubMed]
    [Google Scholar]
  37. Pletnev A. G., Putnak R., Speicher J., Wagar E. J., Vaughn D. W.. ( 2002;). West Nile virus/dengue type 4 virus chimeras that are reduced in neurovirulence and peripheral virulence without loss of immunogenicity or protective efficacy. . Proc Natl Acad Sci U S A 99:, 3036–3041. [CrossRef][PubMed]
    [Google Scholar]
  38. Pletnev A. G., Claire M. S., Elkins R., Speicher J., Murphy B. R., Chanock R. M.. ( 2003;). Molecularly engineered live-attenuated chimeric West Nile/dengue virus vaccines protect rhesus monkeys from West Nile virus. . Virology 314:, 190–195. [CrossRef][PubMed]
    [Google Scholar]
  39. Pletnev A. G., Swayne D. E., Speicher J., Rumyantsev A. A., Murphy B. R.. ( 2006;). Chimeric West Nile/dengue virus vaccine candidate: preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. . Vaccine 24:, 6392–6404. [CrossRef][PubMed]
    [Google Scholar]
  40. Posadas-Herrera G., Inoue S., Fuke I., Muraki Y., Mapua C. A., Khan A. H., Parquet M. del. C., Manabe S., Tanishita O.. & other authors ( 2010;). Development and evaluation of a formalin-inactivated West Nile Virus vaccine (WN-VAX) for a human vaccine candidate. . Vaccine 28:, 7939–7946. [CrossRef][PubMed]
    [Google Scholar]
  41. Prow T. W., Chen X., Prow N. A., Fernando G. J., Tan C. S., Raphael A. P., Chang D., Ruutu M. P., Jenkins D. W.. & other authors ( 2010;). Nanopatch-targeted skin vaccination against West Nile Virus and Chikungunya virus in mice. . Small 6:, 1776–1784. [CrossRef][PubMed]
    [Google Scholar]
  42. Samina I., Khinich Y., Simanov M., Malkinson M.. ( 2005;). An inactivated West Nile virus vaccine for domestic geese-efficacy study and a summary of 4 years of field application. . Vaccine 23:, 4955–4958. [CrossRef][PubMed]
    [Google Scholar]
  43. Schepp-Berglind J., Luo M., Wang D., Wicker J. A., Raja N. U., Hoel B. D., Holman D. H., Barrett A. D., Dong J. Y.. ( 2007;). Complex adenovirus-mediated expression of West Nile virus C, PreM, E, and NS1 proteins induces both humoral and cellular immune responses. . Clin Vaccine Immunol 14:, 1117–1126. [CrossRef][PubMed]
    [Google Scholar]
  44. Tandan J. B., Ohrr H., Sohn Y. M., Yoksan S., Ji M., Nam C. M., Halstead S. B.. ( 2007;). Single dose of SA 14-14-2 vaccine provides long-term protection against Japanese encephalitis: a case-control study in Nepalese children 5 years after immunization. . Vaccine 25:, 5041–5045. [CrossRef][PubMed]
    [Google Scholar]
  45. Uhrlaub J. L., Brien J. D., Widman D. G., Mason P. W., Nikolich-Zugich J.. ( 2011;). Repeated in vivo stimulation of T and B cell responses in old mice generates protective immunity against lethal West Nile virus encephalitis. . J Immunol 186:, 3882–3891. [CrossRef][PubMed]
    [Google Scholar]
  46. Widman D. G., Ishikawa T., Winkelmann E. R., Infante E., Bourne N., Mason P. W.. ( 2009;). RepliVAX WN, a single-cycle flavivirus vaccine to prevent West Nile disease, elicits durable protective immunity in hamsters. . Vaccine 27:, 5550–5553. [CrossRef][PubMed]
    [Google Scholar]
  47. Ye Q., Li X. F., Zhao H., Li S. H., Deng Y. Q., Cao R. Y., Song K. Y., Wang H. J., Hua R. H.. & other authors ( 2012;). A single nucleotide mutation in NS2A of Japanese encephalitis-live vaccine virus (SA14-14-2) ablates NS1′ formation and contributes to attenuation. . J Gen Virol 93:, 1959–1964. [CrossRef][PubMed]
    [Google Scholar]
  48. Yu Y.. ( 2010;). Phenotypic and genotypic characteristics of Japanese encephalitis attenuated live vaccine virus SA14-14-2 and their stabilities. . Vaccine 28:, 3635–3641. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059436-0
Loading
/content/journal/jgv/10.1099/vir.0.059436-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error