1887

Abstract

Recently, a number of broad-spectrum human antibodies binding to the stalk region of influenza A haemagglutinin (HA) have been isolated. As this region tends to develop substitutions at a slower rate than other regions of HA, a vaccine eliciting such antibodies could have a longer effective life. But this begs a question: is the stalk resistant to change even in the face of evolutionary pressure? In this paper, we analysed the known epitopes in the H3 stalk and, utilizing a collection of 3440 sequences, present a novel approach for detecting putative B-cell epitopes in regions such as this, in which mutations occur infrequently. We concluded that there have been periods of activity in the stalk that are consistent with the evolution of antigenic escape. This work casts light on the presence of stalk-binding antibodies in the population as a whole and, through the analysis of antigenically active regions in the stalk, may contribute to the identification of epitopes that are refractive to change and hence useful for vaccine development.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.059410-0
2014-02-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/2/317.html?itemId=/content/journal/jgv/10.1099/vir.0.059410-0&mimeType=html&fmt=ahah

References

  1. Burioni R., Canducci F., Mancini N., Clementi N., Sassi M., De Marco D., Saita D., Diotti R. A., Sautto G.. & other authors ( 2009; ). Molecular cloning of the first human monoclonal antibodies neutralizing with high potency swine-origin influenza A pandemic virus (S-OIV). . New Microbiol 32:, 319–324.[PubMed]
    [Google Scholar]
  2. Bush R. M., Fitch W. M., Bender C. A., Cox N. J.. ( 1999; ). Positive selection on the H3 hemagglutinin gene of human influenza virus A. . Mol Biol Evol 16:, 1457–1465. [CrossRef] [PubMed]
    [Google Scholar]
  3. Clementi N., De Marco D., Mancini N., Solforosi L., Moreno G. J., Gubareva L. V., Mishin V., Di Pietro A., Vicenzi E.. & other authors ( 2011; ). A human monoclonal antibody with neutralizing activity against highly divergent influenza subtypes. . PLoS ONE 6:, e28001. [CrossRef] [PubMed]
    [Google Scholar]
  4. Corti D., Voss J., Gamblin S. J., Codoni G., Macagno A., Jarrossay D., Vachieri S. G., Pinna D., Minola A.. & other authors ( 2011; ). A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. . Science 333:, 850–856. [CrossRef] [PubMed]
    [Google Scholar]
  5. De Marco D., Clementi N., Mancini N., Solforosi L., Moreno G. J., Sun X., Tumpey T. M., Gubareva L. V., Mishin V.. & other authors ( 2012; ). A non-VH1-69 heterosubtypic neutralizing human monoclonal antibody protects mice against H1N1 and H5N1 viruses. . PLoS ONE 7:, e34415. [CrossRef] [PubMed]
    [Google Scholar]
  6. Dreyfus C., Laursen N. S., Kwaks T., Zuijdgeest D., Khayat R., Ekiert D. C., Lee J. H., Metlagel Z., Bujny M. V.. & other authors ( 2012; ). Highly conserved protective epitopes on influenza B viruses. . Science 337:, 1343–1348. [CrossRef] [PubMed]
    [Google Scholar]
  7. Ekiert D. C., Wilson I. A.. ( 2012; ). Broadly neutralizing antibodies against influenza virus and prospects for universal therapies. . Curr Opin Virol 2:, 134–141. [CrossRef] [PubMed]
    [Google Scholar]
  8. Ekiert D. C., Bhabha G., Elsliger M.-A., Friesen R. H. E., Jongeneelen M., Throsby M., Goudsmit J., Wilson I. A.. ( 2009; ). Antibody recognition of a highly conserved influenza virus epitope. . Science 324:, 246–251. [CrossRef] [PubMed]
    [Google Scholar]
  9. Ekiert D. C., Friesen R. H. E., Bhabha G., Kwaks T., Jongeneelen M., Yu W., Ophorst C., Cox F., Korse H. J. W. M.. & other authors ( 2011; ). A highly conserved neutralizing epitope on group 2 influenza A viruses. . Science 333:, 843–850. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fleury D., Barrère B., Bizebard T., Daniels R. S., Skehel J. J., Knossow M.. ( 1999; ). A complex of influenza hemagglutinin with a neutralizing antibody that binds outside the virus receptor binding site. . Nat Struct Biol 6:, 530–534. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gallagher P., Henneberry J., Wilson I., Sambrook J., Gething M. J.. ( 1988; ). Addition of carbohydrate side chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule. . J Cell Biol 107:, 2059–2073. [CrossRef] [PubMed]
    [Google Scholar]
  12. Hashem A. M., Van Domselaar G., Li C., Wang J., She Y.-M., Cyr T. D., Sui J., He R., Marasco W. A., Li X.. ( 2010; ). Universal antibodies against the highly conserved influenza fusion peptide cross-neutralize several subtypes of influenza A virus. . Biochem Biophys Res Commun 403:, 247–251. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kringelum J. V., Nielsen M., Padkjær S. B., Lund O.. ( 2013; ). Structural analysis of B-cell epitopes in antibody:protein complexes. . Mol Immunol 53:, 24–34. [CrossRef] [PubMed]
    [Google Scholar]
  14. Laskowski R. A.. ( 2009; ). PDBsum new things. . Nucleic Acids Res 37: (Database issue), D355–D359. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lees W. D., Moss D. S., Shepherd A. J.. ( 2011; ). Analysis of antigenically important residues in human influenza A virus in terms of B-cell epitopes. . J Virol 85:, 8548–8555. [CrossRef] [PubMed]
    [Google Scholar]
  16. Martínez-Sobrido L., Cadagan R., Steel J., Basler C. F., Palese P., Moran T. M., García-Sastre A.. ( 2010; ). Hemagglutinin-pseudotyped green fluorescent protein-expressing influenza viruses for the detection of influenza virus neutralizing antibodies. . J Virol 84:, 2157–2163. [CrossRef] [PubMed]
    [Google Scholar]
  17. Maurer-Stroh S., Lee R. T. C., Eisenhaber F., Cui L., Phuah S. P., Lin R. T.. ( 2010; ). A new common mutation in the hemagglutinin of the 2009 (H1N1) influenza A virus. . PLoS Curr 2:, RRN1162. [CrossRef] [PubMed]
    [Google Scholar]
  18. Okuno Y., Isegawa Y., Sasao F., Ueda S.. ( 1993; ). A common neutralizing epitope conserved between the hemagglutinins of influenza A virus H1 and H2 strains. . J Virol 67:, 2552–2558.[PubMed]
    [Google Scholar]
  19. Pica N., Hai R., Krammer F., Wang T. T., Maamary J., Eggink D., Tan G. S., Krause J. C., Moran T.. & other authors ( 2012; ). Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. . Proc Natl Acad Sci U S A 109:, 2573–2578. [CrossRef] [PubMed]
    [Google Scholar]
  20. Rubinstein N. D., Mayrose I., Halperin D., Yekutieli D., Gershoni J. M., Pupko T.. ( 2008; ). Computational characterization of B-cell epitopes. . Mol Immunol 45:, 3477–3489. [CrossRef] [PubMed]
    [Google Scholar]
  21. Russ G., Poláková K., Kostolanský F., Styk B., Vancíková M.. ( 1987; ). Monoclonal antibodies to glycopolypeptides HA1 and HA2 of influenza virus haemagglutinin. . Acta Virol 31:, 374–386.[PubMed]
    [Google Scholar]
  22. Russell R. J., Gamblin S. J., Haire L. F., Stevens D. J., Xiao B., Ha Y., Skehel J. J.. ( 2004; ). H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. . Virology 325:, 287–296. [CrossRef] [PubMed]
    [Google Scholar]
  23. Schmeisser F., Friedman R., Besho J., Lugovtsev V., Soto J., Wang W., Weiss C., Williams O., Xie H.. & other authors ( 2013; ). Neutralizing and protective epitopes of the 2009 pandemic influenza H1N1 hemagglutinin. . Influenza Other Respi Viruses 7:, 480–490. [CrossRef] [PubMed]
    [Google Scholar]
  24. Shih A. C.-C., Hsiao T.-C., Ho M.-S., Li W.-H.. ( 2007; ). Simultaneous amino acid substitutions at antigenic sites drive influenza A hemagglutinin evolution. . Proc Natl Acad Sci U S A 104:, 6283–6288. [CrossRef] [PubMed]
    [Google Scholar]
  25. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C.. ( 1984; ). A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. . Proc Natl Acad Sci U S A 81:, 1779–1783. [CrossRef] [PubMed]
    [Google Scholar]
  26. Staneková Z., Mucha V., Sládková T., Blaškovičová H., Kostolanský F., Varečková E.. ( 2012; ). Epitope specificity of anti-HA2 antibodies induced in humans during influenza infection. . Influenza Other Respi Viruses 6:, 389–395. [CrossRef] [PubMed]
    [Google Scholar]
  27. Strengell M., Ikonen N., Ziegler T., Julkunen I.. ( 2011; ). Minor changes in the hemagglutinin of influenza A(H1N1)2009 virus alter its antigenic properties. . PLoS ONE 6:, e25848. [CrossRef] [PubMed]
    [Google Scholar]
  28. Sui J., Hwang W. C., Perez S., Wei G., Aird D., Chen L. M., Santelli E., Stec B., Cadwell G.. & other authors ( 2009; ). Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. . Nat Struct Mol Biol 16:, 265–273. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tang J. W., Ngai K. L. K., Lam W. Y., Chan P. K. S.. ( 2008; ). Seasonality of influenza A(H3N2) virus: a Hong Kong perspective (1997–2006). . PLoS ONE 3:, e2768. [CrossRef] [PubMed]
    [Google Scholar]
  30. Throsby M., van den Brink E., Jongeneelen M., Poon L. L. M., Alard P., Cornelissen L., Bakker A., Cox F., van Deventer E.. & other authors ( 2008; ). Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. . PLoS ONE 3:, e3942. [CrossRef] [PubMed]
    [Google Scholar]
  31. Tsibane T., Ekiert D. C., Krause J. C., Martinez O., Crowe J. E. Jr, Wilson I. A., Basler C. F.. ( 2012; ). Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses. . PLoS Pathog 8:, e1003067. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang T. T., Palese P.. ( 2009; ). Universal epitopes of influenza virus hemagglutinins. ? Nat Struct Mol Biol 16:, 233–234. [CrossRef] [PubMed]
    [Google Scholar]
  33. Wang W., Anderson C. M., De Feo C. J., Zhuang M., Yang H., Vassell R., Xie H., Ye Z., Scott D., Weiss C. D.. ( 2011; ). Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2. . PLoS Pathog 7:, e1002081. [CrossRef] [PubMed]
    [Google Scholar]
  34. WHO ( 2009; ). Influenza WHO Fact Sheet No 211. . http://www.who.int/mediacentre/factsheets/fs211/en/. World Health Organization;
  35. Wiley D. C., Skehel J. J.. ( 1987; ). The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. . Annu Rev Biochem 56:, 365–394. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wiley D. C., Wilson I. A., Skehel J. J.. ( 1981; ). Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. . Nature 289:, 373–378. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wilson I. A., Cox N. J.. ( 1990; ). Structural basis of immune recognition of influenza virus hemagglutinin. . Annu Rev Immunol 8:, 737–787. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wilson I. A., Skehel J. J., Wiley D. C.. ( 1981; ). Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. . Nature 289:, 366–373. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wrammert J., Koutsonanos D., Li G.-M., Edupuganti S., Sui J., Morrissey M., McCausland M., Skountzou I., Hornig M.. & other authors ( 2011; ). Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. . J Exp Med 208:, 181–193. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.059410-0
Loading
/content/journal/jgv/10.1099/vir.0.059410-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error